Continuous deformations of Fredholm operators in B(H)
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09082021-231927/ |
Resumo: | Let X be a compact Hausdorff topological space. The K-group of X, denoted by K(X), is the Grothendieck group associated to the commutative monoid of isomorphism classes of complex vector bundles over X, equipped with the Whitney sum. Let H be an infinite dimensional Hilbert space and F(H) be the set of Fredholm operators on H. The Atiyah-Jänich Theorem states that the families-index is a natural isomorphism between the monoid of homotopy classes of functions from X into F(H) and the group K(X). In case X is a singleton, the families-index is the classic Fredholm index, and the Atiyah-Jänich Theorem states that the arcwise connected components of F(H) are characterized by the Fredholm index. In this work, we give a detailed exposition of the Atiyah-Jänich Theorem, studying the necessary elements to understand the construction of the K-group of a compact Hausdorff topological space, the definition of the families-index and giving a proof that such an index is the mentioned isomorphism. |
| id |
USP_9e20d5ceaa2b736d7ffdb628b8d063b2 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-09082021-231927 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Continuous deformations of Fredholm operators in B(H)Deformações contínuas de operadores de Fredholm em B(H)Fredholm indexFredholm operatorsIndex theoryÍndice de FredholmK-teoriaK-teoria de espaços compactosK-theoryK-theory of compact spacesOperadores de FredholmTeoria do índiceLet X be a compact Hausdorff topological space. The K-group of X, denoted by K(X), is the Grothendieck group associated to the commutative monoid of isomorphism classes of complex vector bundles over X, equipped with the Whitney sum. Let H be an infinite dimensional Hilbert space and F(H) be the set of Fredholm operators on H. The Atiyah-Jänich Theorem states that the families-index is a natural isomorphism between the monoid of homotopy classes of functions from X into F(H) and the group K(X). In case X is a singleton, the families-index is the classic Fredholm index, and the Atiyah-Jänich Theorem states that the arcwise connected components of F(H) are characterized by the Fredholm index. In this work, we give a detailed exposition of the Atiyah-Jänich Theorem, studying the necessary elements to understand the construction of the K-group of a compact Hausdorff topological space, the definition of the families-index and giving a proof that such an index is the mentioned isomorphism.Seja X um espaço topológico Hausdorff compacto. O K-grupo de X, denotado por K(X), é o grupo de Grothendieck associado ao monoide comutativo das classes de isomorfismos de fibrados vetoriais complexos sobre X, munido da soma de Whitney. Sejam H um espaço de Hilbert de dimensão infinita e F(H) o conjunto dos operadores de Fredholm em H. O Teorema de Atiyah-Jänich afirma que o families-index é um isomorfismo natural entre o monoide das classes de homotopia das funções de X em F(H) e o grupo K(X). No caso em que X consiste de apenas um ponto, o families-index é o clássico índice de Fredholm, e o Teorema de Atiyah-Jänich afirma que as componentes conexas por caminhos de F(H) são caracterizadas pelo índice de Fredholm. Nesse trabalho, fazemos uma exposição detalhada do Teorema de Atiyah-Jänich, estudando os elementos necessários para entender a construção do K-grupo de um espaço topológico Hausdorff compacto, a definição do families-index e a demonstração de que tal índice é o isomorfismo mencionado.Biblioteca Digitais de Teses e Dissertações da USPMelo, Severino Toscano do RegoDias, Rodrigo Lima2021-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-09082021-231927/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-01-28T16:27:02Zoai:teses.usp.br:tde-09082021-231927Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-01-28T16:27:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Continuous deformations of Fredholm operators in B(H) Deformações contínuas de operadores de Fredholm em B(H) |
| title |
Continuous deformations of Fredholm operators in B(H) |
| spellingShingle |
Continuous deformations of Fredholm operators in B(H) Dias, Rodrigo Lima Fredholm index Fredholm operators Index theory Índice de Fredholm K-teoria K-teoria de espaços compactos K-theory K-theory of compact spaces Operadores de Fredholm Teoria do índice |
| title_short |
Continuous deformations of Fredholm operators in B(H) |
| title_full |
Continuous deformations of Fredholm operators in B(H) |
| title_fullStr |
Continuous deformations of Fredholm operators in B(H) |
| title_full_unstemmed |
Continuous deformations of Fredholm operators in B(H) |
| title_sort |
Continuous deformations of Fredholm operators in B(H) |
| author |
Dias, Rodrigo Lima |
| author_facet |
Dias, Rodrigo Lima |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Melo, Severino Toscano do Rego |
| dc.contributor.author.fl_str_mv |
Dias, Rodrigo Lima |
| dc.subject.por.fl_str_mv |
Fredholm index Fredholm operators Index theory Índice de Fredholm K-teoria K-teoria de espaços compactos K-theory K-theory of compact spaces Operadores de Fredholm Teoria do índice |
| topic |
Fredholm index Fredholm operators Index theory Índice de Fredholm K-teoria K-teoria de espaços compactos K-theory K-theory of compact spaces Operadores de Fredholm Teoria do índice |
| description |
Let X be a compact Hausdorff topological space. The K-group of X, denoted by K(X), is the Grothendieck group associated to the commutative monoid of isomorphism classes of complex vector bundles over X, equipped with the Whitney sum. Let H be an infinite dimensional Hilbert space and F(H) be the set of Fredholm operators on H. The Atiyah-Jänich Theorem states that the families-index is a natural isomorphism between the monoid of homotopy classes of functions from X into F(H) and the group K(X). In case X is a singleton, the families-index is the classic Fredholm index, and the Atiyah-Jänich Theorem states that the arcwise connected components of F(H) are characterized by the Fredholm index. In this work, we give a detailed exposition of the Atiyah-Jänich Theorem, studying the necessary elements to understand the construction of the K-group of a compact Hausdorff topological space, the definition of the families-index and giving a proof that such an index is the mentioned isomorphism. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-07-29 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09082021-231927/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-09082021-231927/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258007156555776 |