Ensaios sobre modelos de regressão com dispersão variável

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Correia de Souza, Tatiene
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/6049
Resumo: A análise de regressão é uma das técnicas estatísticas mais usadas. Nesta tese são abordados modelos de regressão linear e modelos de regressão beta ambos com dispersão variável. Na primeira etapa da tese, apresentamos o modelo de regressão linear, e na segunda, o modelo de regressão beta. Sob as pressuposições usuais estabelecidas para o modelo linear, a estimação dos parâmetros é usualmente feita pelo método de mínimos quadrados ordinários (MQO). Esse método fornece estimadores com propriedades desejáveis, como não-viciosidade, consistência e eficiência. Entretanto, sob heteroscedasticidade, os estimadores de MQO tornam-se ineficientes e o estimador usual de sua matriz de covariâncias não é consistente. Vários autores propuseram estratégias para estimar de forma consistente a matriz de covariâncias dos estimadores dos parâmetros do modelo de regressão, geralmente baseadas em resíduos de MQO. Estes resíduos, porém, podem ser fortemente influenciados pela presença de pontos de alavanca. Avaliamos os comportamentos dos estimadores HC0, HC3 e HC4 da matriz de covariâncias do estimador de MQO quando resíduos oriundos de regressões robustas (menor mediana dos quadrados, mínimos quadrados podados e mínimos quadrados ponderados) são usados em substituição aos resíduos de MQO, no modelo de regressão com e sem restrição sobre os parâmetros. Os resultados revelaram que o teste construído a partir do estimador HC0 apresenta melhor desempenho quando resíduos oriundos de regressão robusta são utilizados em substituição aos resíduos de MQO, na presença de pontos de alavanca. O desempenho do teste baseado nesse estimador melhora significativamente quando estimação restrita é utilizada, principalmente com resíduos robustos. A mesma conclusão foi obtida na maioria dos cenários estudados sobre o teste baseado no estimador HC3, contudo considerando estimação irrestrita. O teste baseado no estimador HC4 apresenta desempenho superior quando resíduos oriundos do estimador MQO e mínimos quadrados ponderados são utilizados. Diferentemente do modelo de regressão linear, o modelo de regressão beta que foi proposto por Ferrari & Cribari Neto (2004) possui aplicabilidade na modelagem de variáveis do tipo taxas ou proporções. A resposta média é relacionada com um preditor linear que envolve covariáveis e parâmetros de regressão desconhecidos através de uma função de ligação, sendo ainda o modelo indexado por um parâmetro de precisão. Smithson & Verkuilen (2006) apresentaram o modelo de regressão beta em que há estrutura de regressão para o parâmetro de precisão. Em termos práticos, contudo, há certa dificuldade em modelar a precisão. Considerando tal dificuldade, um dos nossos interesses consiste em propor estimadores do tipo sanduíche para modelos de regressão beta em que a estrutura de regressão para o parâmetro de dispersão (o recíproco da precisão) é negligenciada. Adicionalmente, consideramos o caso em que há estrutura de regressão para dispersão, mas a modelamos de forma incorreta através dos preditores e das funções de ligação dos submodelos da média e dispersão. Através de simulações de Monte Carlo, nós avaliamos os desempenhos dos testes baseados nos estimadores sanduíche e comparamos com os desempenhos dos testes z que utilizam os estimadores usuais da matriz de covariâncias. Para ilustrar nossos resultados, apresentamos uma aplicação a dados reais. Considerando o modelo de regressão beta com dispersão variável, um outro objetivo consiste em explicar a diferença entre as proporções de votos válidos do presidente Lula nos segundos turnos das eleições de 2006 e 2002. Adicionalmente, calculamos os impactos dos gastos em programas assistenciais e do crescimento da economia sobre o resultado da eleição presidencial de 2006. Comparando os gastos com programas assistenciais em 2006 e 2002, vale ressaltar que em 2006 o gasto em tais programas foi muito maior do que em 2002. Nós estimamos que, se os gastos com programas assistenciais em 2006 fossem mantidos nos níveis de 2002, haveria uma redução de aproximadamente 7 milhões na votação do ex-presidente Lula. Adicionalmente, estimamos que sem o crescimento da economia, haveria uma redução na votação do ex-presidente Lula de cerca de 2 milhões de votos. Por fim, objetivamos modelar a proporção de ateus e a proporção de pessoas que não acreditam que religião é importante para suas vidas cotidianas em diferentes países. Para isso, consideramos algumas covariáveis, tais como quociente de inteligência, renda nacional bruta ajustada pela paridade no poder de compra, predominância de muçulmanos, grau de abertura da economia e expectativa de vida em cada uma das nações consideradas. Estimamos o impacto do quociente de inteligência sobre a concentração média de ateus e de pessoas que não valorizam religião. Os resultados revelaram que há forte associação positiva entre inteligência e descrença religiosa. Dado que as duas variáveis dependentes consideradas são proporções, aqui também utilizamos o modelo de regressão beta
id UFPE_ec4c9b331a7dc444e5c299f3a5d740f2
oai_identifier_str oai:repositorio.ufpe.br:123456789/6049
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Ensaios sobre modelos de regressão com dispersão variávelAteísmoEleição presidencialEstimadores sanduícheHeteroscedasticidadeInteligênciaModelo de regressão betaA análise de regressão é uma das técnicas estatísticas mais usadas. Nesta tese são abordados modelos de regressão linear e modelos de regressão beta ambos com dispersão variável. Na primeira etapa da tese, apresentamos o modelo de regressão linear, e na segunda, o modelo de regressão beta. Sob as pressuposições usuais estabelecidas para o modelo linear, a estimação dos parâmetros é usualmente feita pelo método de mínimos quadrados ordinários (MQO). Esse método fornece estimadores com propriedades desejáveis, como não-viciosidade, consistência e eficiência. Entretanto, sob heteroscedasticidade, os estimadores de MQO tornam-se ineficientes e o estimador usual de sua matriz de covariâncias não é consistente. Vários autores propuseram estratégias para estimar de forma consistente a matriz de covariâncias dos estimadores dos parâmetros do modelo de regressão, geralmente baseadas em resíduos de MQO. Estes resíduos, porém, podem ser fortemente influenciados pela presença de pontos de alavanca. Avaliamos os comportamentos dos estimadores HC0, HC3 e HC4 da matriz de covariâncias do estimador de MQO quando resíduos oriundos de regressões robustas (menor mediana dos quadrados, mínimos quadrados podados e mínimos quadrados ponderados) são usados em substituição aos resíduos de MQO, no modelo de regressão com e sem restrição sobre os parâmetros. Os resultados revelaram que o teste construído a partir do estimador HC0 apresenta melhor desempenho quando resíduos oriundos de regressão robusta são utilizados em substituição aos resíduos de MQO, na presença de pontos de alavanca. O desempenho do teste baseado nesse estimador melhora significativamente quando estimação restrita é utilizada, principalmente com resíduos robustos. A mesma conclusão foi obtida na maioria dos cenários estudados sobre o teste baseado no estimador HC3, contudo considerando estimação irrestrita. O teste baseado no estimador HC4 apresenta desempenho superior quando resíduos oriundos do estimador MQO e mínimos quadrados ponderados são utilizados. Diferentemente do modelo de regressão linear, o modelo de regressão beta que foi proposto por Ferrari & Cribari Neto (2004) possui aplicabilidade na modelagem de variáveis do tipo taxas ou proporções. A resposta média é relacionada com um preditor linear que envolve covariáveis e parâmetros de regressão desconhecidos através de uma função de ligação, sendo ainda o modelo indexado por um parâmetro de precisão. Smithson & Verkuilen (2006) apresentaram o modelo de regressão beta em que há estrutura de regressão para o parâmetro de precisão. Em termos práticos, contudo, há certa dificuldade em modelar a precisão. Considerando tal dificuldade, um dos nossos interesses consiste em propor estimadores do tipo sanduíche para modelos de regressão beta em que a estrutura de regressão para o parâmetro de dispersão (o recíproco da precisão) é negligenciada. Adicionalmente, consideramos o caso em que há estrutura de regressão para dispersão, mas a modelamos de forma incorreta através dos preditores e das funções de ligação dos submodelos da média e dispersão. Através de simulações de Monte Carlo, nós avaliamos os desempenhos dos testes baseados nos estimadores sanduíche e comparamos com os desempenhos dos testes z que utilizam os estimadores usuais da matriz de covariâncias. Para ilustrar nossos resultados, apresentamos uma aplicação a dados reais. Considerando o modelo de regressão beta com dispersão variável, um outro objetivo consiste em explicar a diferença entre as proporções de votos válidos do presidente Lula nos segundos turnos das eleições de 2006 e 2002. Adicionalmente, calculamos os impactos dos gastos em programas assistenciais e do crescimento da economia sobre o resultado da eleição presidencial de 2006. Comparando os gastos com programas assistenciais em 2006 e 2002, vale ressaltar que em 2006 o gasto em tais programas foi muito maior do que em 2002. Nós estimamos que, se os gastos com programas assistenciais em 2006 fossem mantidos nos níveis de 2002, haveria uma redução de aproximadamente 7 milhões na votação do ex-presidente Lula. Adicionalmente, estimamos que sem o crescimento da economia, haveria uma redução na votação do ex-presidente Lula de cerca de 2 milhões de votos. Por fim, objetivamos modelar a proporção de ateus e a proporção de pessoas que não acreditam que religião é importante para suas vidas cotidianas em diferentes países. Para isso, consideramos algumas covariáveis, tais como quociente de inteligência, renda nacional bruta ajustada pela paridade no poder de compra, predominância de muçulmanos, grau de abertura da economia e expectativa de vida em cada uma das nações consideradas. Estimamos o impacto do quociente de inteligência sobre a concentração média de ateus e de pessoas que não valorizam religião. Os resultados revelaram que há forte associação positiva entre inteligência e descrença religiosa. Dado que as duas variáveis dependentes consideradas são proporções, aqui também utilizamos o modelo de regressão betaCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de PernambucoCribari Neto, Francisco Correia de Souza, Tatiene2014-06-12T18:01:26Z2014-06-12T18:01:26Z2011-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfCorreia de Souza, Tatiene; Cribari Neto, Francisco. Ensaios sobre modelos de regressão com dispersão variável. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/6049porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T14:56:13Zoai:repositorio.ufpe.br:123456789/6049Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:56:13Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Ensaios sobre modelos de regressão com dispersão variável
title Ensaios sobre modelos de regressão com dispersão variável
spellingShingle Ensaios sobre modelos de regressão com dispersão variável
Correia de Souza, Tatiene
Ateísmo
Eleição presidencial
Estimadores sanduíche
Heteroscedasticidade
Inteligência
Modelo de regressão beta
title_short Ensaios sobre modelos de regressão com dispersão variável
title_full Ensaios sobre modelos de regressão com dispersão variável
title_fullStr Ensaios sobre modelos de regressão com dispersão variável
title_full_unstemmed Ensaios sobre modelos de regressão com dispersão variável
title_sort Ensaios sobre modelos de regressão com dispersão variável
author Correia de Souza, Tatiene
author_facet Correia de Souza, Tatiene
author_role author
dc.contributor.none.fl_str_mv Cribari Neto, Francisco
dc.contributor.author.fl_str_mv Correia de Souza, Tatiene
dc.subject.por.fl_str_mv Ateísmo
Eleição presidencial
Estimadores sanduíche
Heteroscedasticidade
Inteligência
Modelo de regressão beta
topic Ateísmo
Eleição presidencial
Estimadores sanduíche
Heteroscedasticidade
Inteligência
Modelo de regressão beta
description A análise de regressão é uma das técnicas estatísticas mais usadas. Nesta tese são abordados modelos de regressão linear e modelos de regressão beta ambos com dispersão variável. Na primeira etapa da tese, apresentamos o modelo de regressão linear, e na segunda, o modelo de regressão beta. Sob as pressuposições usuais estabelecidas para o modelo linear, a estimação dos parâmetros é usualmente feita pelo método de mínimos quadrados ordinários (MQO). Esse método fornece estimadores com propriedades desejáveis, como não-viciosidade, consistência e eficiência. Entretanto, sob heteroscedasticidade, os estimadores de MQO tornam-se ineficientes e o estimador usual de sua matriz de covariâncias não é consistente. Vários autores propuseram estratégias para estimar de forma consistente a matriz de covariâncias dos estimadores dos parâmetros do modelo de regressão, geralmente baseadas em resíduos de MQO. Estes resíduos, porém, podem ser fortemente influenciados pela presença de pontos de alavanca. Avaliamos os comportamentos dos estimadores HC0, HC3 e HC4 da matriz de covariâncias do estimador de MQO quando resíduos oriundos de regressões robustas (menor mediana dos quadrados, mínimos quadrados podados e mínimos quadrados ponderados) são usados em substituição aos resíduos de MQO, no modelo de regressão com e sem restrição sobre os parâmetros. Os resultados revelaram que o teste construído a partir do estimador HC0 apresenta melhor desempenho quando resíduos oriundos de regressão robusta são utilizados em substituição aos resíduos de MQO, na presença de pontos de alavanca. O desempenho do teste baseado nesse estimador melhora significativamente quando estimação restrita é utilizada, principalmente com resíduos robustos. A mesma conclusão foi obtida na maioria dos cenários estudados sobre o teste baseado no estimador HC3, contudo considerando estimação irrestrita. O teste baseado no estimador HC4 apresenta desempenho superior quando resíduos oriundos do estimador MQO e mínimos quadrados ponderados são utilizados. Diferentemente do modelo de regressão linear, o modelo de regressão beta que foi proposto por Ferrari & Cribari Neto (2004) possui aplicabilidade na modelagem de variáveis do tipo taxas ou proporções. A resposta média é relacionada com um preditor linear que envolve covariáveis e parâmetros de regressão desconhecidos através de uma função de ligação, sendo ainda o modelo indexado por um parâmetro de precisão. Smithson & Verkuilen (2006) apresentaram o modelo de regressão beta em que há estrutura de regressão para o parâmetro de precisão. Em termos práticos, contudo, há certa dificuldade em modelar a precisão. Considerando tal dificuldade, um dos nossos interesses consiste em propor estimadores do tipo sanduíche para modelos de regressão beta em que a estrutura de regressão para o parâmetro de dispersão (o recíproco da precisão) é negligenciada. Adicionalmente, consideramos o caso em que há estrutura de regressão para dispersão, mas a modelamos de forma incorreta através dos preditores e das funções de ligação dos submodelos da média e dispersão. Através de simulações de Monte Carlo, nós avaliamos os desempenhos dos testes baseados nos estimadores sanduíche e comparamos com os desempenhos dos testes z que utilizam os estimadores usuais da matriz de covariâncias. Para ilustrar nossos resultados, apresentamos uma aplicação a dados reais. Considerando o modelo de regressão beta com dispersão variável, um outro objetivo consiste em explicar a diferença entre as proporções de votos válidos do presidente Lula nos segundos turnos das eleições de 2006 e 2002. Adicionalmente, calculamos os impactos dos gastos em programas assistenciais e do crescimento da economia sobre o resultado da eleição presidencial de 2006. Comparando os gastos com programas assistenciais em 2006 e 2002, vale ressaltar que em 2006 o gasto em tais programas foi muito maior do que em 2002. Nós estimamos que, se os gastos com programas assistenciais em 2006 fossem mantidos nos níveis de 2002, haveria uma redução de aproximadamente 7 milhões na votação do ex-presidente Lula. Adicionalmente, estimamos que sem o crescimento da economia, haveria uma redução na votação do ex-presidente Lula de cerca de 2 milhões de votos. Por fim, objetivamos modelar a proporção de ateus e a proporção de pessoas que não acreditam que religião é importante para suas vidas cotidianas em diferentes países. Para isso, consideramos algumas covariáveis, tais como quociente de inteligência, renda nacional bruta ajustada pela paridade no poder de compra, predominância de muçulmanos, grau de abertura da economia e expectativa de vida em cada uma das nações consideradas. Estimamos o impacto do quociente de inteligência sobre a concentração média de ateus e de pessoas que não valorizam religião. Os resultados revelaram que há forte associação positiva entre inteligência e descrença religiosa. Dado que as duas variáveis dependentes consideradas são proporções, aqui também utilizamos o modelo de regressão beta
publishDate 2011
dc.date.none.fl_str_mv 2011-01-31
2014-06-12T18:01:26Z
2014-06-12T18:01:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Correia de Souza, Tatiene; Cribari Neto, Francisco. Ensaios sobre modelos de regressão com dispersão variável. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011.
https://repositorio.ufpe.br/handle/123456789/6049
identifier_str_mv Correia de Souza, Tatiene; Cribari Neto, Francisco. Ensaios sobre modelos de regressão com dispersão variável. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011.
url https://repositorio.ufpe.br/handle/123456789/6049
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041896879587328