SmartFogLB: balanceamento de carga na computação em névoa

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Pereira, Éder Paulo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/0013000013q16
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Ciência da Computação
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/22269
Resumo: Fog Computing is characterized as an extension of Cloud Computing to the edge of the network. Such a paradigm, therefore, does not exclude the Cloud, but complements it, filling gaps such as lower response time and also less use of internet links. This paradigm meets the needs imposed by the Internet of Things applications, which often have restrictions on low processing times, privacy, priority, bandwidth, among others. Considering the growing and diverse demand for Internet of Things applications, the nodes that compose the Fog Computing tend to be overloaded, given the large number of smart things requiring computational capabilities, such as processing, storage, networking, among others. Consequently, overloaded computational nodes compromise the response times of IoT applications that have restrictions for the shortest possible time. In this sense, the main challenge to provide the shortest response time for such applications is the distribution of tasks between the fog nodes. However, the availability of computational resources in the fog must be considered since it is characterized as a dynamic environment to perform load balancing in this new computing paradigm. To alleviate the response time problem, this work presents a load balancing approach that aims to reduce the processing time of the tasks in the fog nodes. The distribution of tasks between the Nodes of the Fog was carried out through dynamic load balancing in real time, whose contribution is therefore the load balancing algorithm that takes into account the dynamics and computational heterogeneity of the environment, as well as the sudden changes in the indexes use of computational resources, which associates tasks more appropriately. To prove the effectiveness of the proposed solution, a simulation environment was organized, where this work was compared with some load balancing approaches, such as RoundRobin and also without a balancer. The results show that high priority tasks consume the shortest possible response time in the environment, either in processing or in the queue, which brings out the effectiveness of the proposed solution. The priority-based queuing mechanism proved to be an important component of the solution, which analyzes and reorganizes the task queue based on its priorities.
id UFSM_7f61b6e13c951ef5f251f94de81db5cf
oai_identifier_str oai:repositorio.ufsm.br:1/22269
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling SmartFogLB: balanceamento de carga na computação em névoaSmartFogLB: an load balancing approach in fog computingComputação em névoaInternet das coisasBalanceamento de cargaFog computingInternet of thingsLoad balancingCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOFog Computing is characterized as an extension of Cloud Computing to the edge of the network. Such a paradigm, therefore, does not exclude the Cloud, but complements it, filling gaps such as lower response time and also less use of internet links. This paradigm meets the needs imposed by the Internet of Things applications, which often have restrictions on low processing times, privacy, priority, bandwidth, among others. Considering the growing and diverse demand for Internet of Things applications, the nodes that compose the Fog Computing tend to be overloaded, given the large number of smart things requiring computational capabilities, such as processing, storage, networking, among others. Consequently, overloaded computational nodes compromise the response times of IoT applications that have restrictions for the shortest possible time. In this sense, the main challenge to provide the shortest response time for such applications is the distribution of tasks between the fog nodes. However, the availability of computational resources in the fog must be considered since it is characterized as a dynamic environment to perform load balancing in this new computing paradigm. To alleviate the response time problem, this work presents a load balancing approach that aims to reduce the processing time of the tasks in the fog nodes. The distribution of tasks between the Nodes of the Fog was carried out through dynamic load balancing in real time, whose contribution is therefore the load balancing algorithm that takes into account the dynamics and computational heterogeneity of the environment, as well as the sudden changes in the indexes use of computational resources, which associates tasks more appropriately. To prove the effectiveness of the proposed solution, a simulation environment was organized, where this work was compared with some load balancing approaches, such as RoundRobin and also without a balancer. The results show that high priority tasks consume the shortest possible response time in the environment, either in processing or in the queue, which brings out the effectiveness of the proposed solution. The priority-based queuing mechanism proved to be an important component of the solution, which analyzes and reorganizes the task queue based on its priorities.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA Computação em Névoa, caracteriza-se como uma extensão da Computação em Nuvem para a borda da rede. Tal paradigma, portanto, não exclui a Nuvem, mas a complementa, preenchendo lacunas como tempo de resposta mais baixo e também menor utilização de links de internet. Este paradigma vem ao encontro das necessidades impostas pelas aplicações de Internet das Coisas, as quais, muitas vezes, possuem restrições de baixos tempos de processamento, privacidade, prioridade, largura de banda, dentre outros. Considerando a grande quantidade de coisas inteligentes necessitando de capacidades computacionais e a demanda crescente de aplicações de Internet das Coisas, os nodos que compõem a Computação em Névoa tendem a ficar sobrecarregados. Consequentemente, os tempos de resposta das aplicações de Internet das Coisas que possuem restrições são afetados. Neste sentido, um dos principais desafios para prover menores tempos de resposta para tais aplicações é a distribuição das tarefas de Internet das Coisas entre os nodos do nevoeiro. Para tanto, propor estratégias de balanceamento de carga para este novo paradigma passam a ser uma alternativa para aumentar a disponibilidade dos recursos computacionais na névoa, principalmente considerando este como um ambiente dinâmico. Para atenuar este problema, este trabalho apresenta uma abordagem de balanceamento de carga, que almeja reduzir o tempo de processamento das tarefas nos nodos do nevoeiro. Nossa proposta toma decisões em tempo real considerando a dinamicidade e heterogeneidade do ambiente e utilização de CPU Memória, Armazenamento, Rede dos nodos e Prioridade da tarefas. Com o objetivo de validar a efetividade da abordagem proposta, foi organizado um ambiente de simulação. Para tanto onde comparou-se este trabalho com algumas abordagens de balanceamento de carga, como Round-Robin e também sem balanceador. Os resultados mostram que as tarefas de alta prioridade consomem o menor tempo de resposta possível no ambiente, seja de processamento ou na fila, o que traz à tona a efetividade da solução proposta. O mecanismo de fila baseado em prioridade mostrou-se um importante componente da solução, o qual analisa e reorganiza a fila de tarefas baseado em suas prioridades.Universidade Federal de Santa MariaBrasilCiência da ComputaçãoUFSMPrograma de Pós-Graduação em Ciência da ComputaçãoCentro de TecnologiaMedina, Roseclea Duartehttp://lattes.cnpq.br/6560346309368052Padoin, Edson LuizAmaral, Érico Marcelo Hoff doVoss, Gleizer BierhalzPereira, Éder Paulo2021-09-23T18:44:32Z2021-09-23T18:44:32Z2020-08-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22269ark:/26339/0013000013q16porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-08-13T18:46:51Zoai:repositorio.ufsm.br:1/22269Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2024-08-13T18:46:51Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv SmartFogLB: balanceamento de carga na computação em névoa
SmartFogLB: an load balancing approach in fog computing
title SmartFogLB: balanceamento de carga na computação em névoa
spellingShingle SmartFogLB: balanceamento de carga na computação em névoa
Pereira, Éder Paulo
Computação em névoa
Internet das coisas
Balanceamento de carga
Fog computing
Internet of things
Load balancing
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short SmartFogLB: balanceamento de carga na computação em névoa
title_full SmartFogLB: balanceamento de carga na computação em névoa
title_fullStr SmartFogLB: balanceamento de carga na computação em névoa
title_full_unstemmed SmartFogLB: balanceamento de carga na computação em névoa
title_sort SmartFogLB: balanceamento de carga na computação em névoa
author Pereira, Éder Paulo
author_facet Pereira, Éder Paulo
author_role author
dc.contributor.none.fl_str_mv Medina, Roseclea Duarte
http://lattes.cnpq.br/6560346309368052
Padoin, Edson Luiz
Amaral, Érico Marcelo Hoff do
Voss, Gleizer Bierhalz
dc.contributor.author.fl_str_mv Pereira, Éder Paulo
dc.subject.por.fl_str_mv Computação em névoa
Internet das coisas
Balanceamento de carga
Fog computing
Internet of things
Load balancing
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Computação em névoa
Internet das coisas
Balanceamento de carga
Fog computing
Internet of things
Load balancing
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Fog Computing is characterized as an extension of Cloud Computing to the edge of the network. Such a paradigm, therefore, does not exclude the Cloud, but complements it, filling gaps such as lower response time and also less use of internet links. This paradigm meets the needs imposed by the Internet of Things applications, which often have restrictions on low processing times, privacy, priority, bandwidth, among others. Considering the growing and diverse demand for Internet of Things applications, the nodes that compose the Fog Computing tend to be overloaded, given the large number of smart things requiring computational capabilities, such as processing, storage, networking, among others. Consequently, overloaded computational nodes compromise the response times of IoT applications that have restrictions for the shortest possible time. In this sense, the main challenge to provide the shortest response time for such applications is the distribution of tasks between the fog nodes. However, the availability of computational resources in the fog must be considered since it is characterized as a dynamic environment to perform load balancing in this new computing paradigm. To alleviate the response time problem, this work presents a load balancing approach that aims to reduce the processing time of the tasks in the fog nodes. The distribution of tasks between the Nodes of the Fog was carried out through dynamic load balancing in real time, whose contribution is therefore the load balancing algorithm that takes into account the dynamics and computational heterogeneity of the environment, as well as the sudden changes in the indexes use of computational resources, which associates tasks more appropriately. To prove the effectiveness of the proposed solution, a simulation environment was organized, where this work was compared with some load balancing approaches, such as RoundRobin and also without a balancer. The results show that high priority tasks consume the shortest possible response time in the environment, either in processing or in the queue, which brings out the effectiveness of the proposed solution. The priority-based queuing mechanism proved to be an important component of the solution, which analyzes and reorganizes the task queue based on its priorities.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-12
2021-09-23T18:44:32Z
2021-09-23T18:44:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/22269
dc.identifier.dark.fl_str_mv ark:/26339/0013000013q16
url http://repositorio.ufsm.br/handle/1/22269
identifier_str_mv ark:/26339/0013000013q16
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Ciência da Computação
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Ciência da Computação
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153488637722624