Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Portes, Pablo Cescon lattes
Orientador(a): Beijo, Luiz Alberto lattes
Banca de defesa: Marchon, Cássia Helena, Veloso, Manoel Vitor De Souza
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alfenas
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística Aplicada e Biometria
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifal-mg.edu.br/handle/123456789/923
Resumo: The Brazilian Consumer Price Index (CPI) is the index used by the Central Bank of Brazil in establishing its inflation targets. By serving as an inflation reference, the Brazilian CPI is closely monitored by foreign and Brazilian investors as well as by public managers. It is known that high and uncontrolled inflation causes distortions and economic losses in the country, so there is an interest on the part of managers and financial managers to predict maximum inflation for a certain period of time. Thus, the objective of the work was to model the maximum Brazilian CPI levels, which can occur in a four-month period. The choice of four-month periods aims to equate the analysis with the intervals between the presentations of the statements of compliance with the fiscal targets by the government. The Generalized Extreme Values (GEV) distribution was used for modeling. For the estimation of the parameters of the GEV distribution the maximum likelihood method and the Bayesian Inference were used. In the elicitation of information for the construction of the prior distributions, we used data from countries economically similar to Brazil: Russia, China and India, which belong to BRICS. In addition, different combinations of prior distribution were created, using information from these countries with different variance structures. In order to evaluate the best estimation methodology, the accuracy and precision of the estimates of the maximum inflation levels for certain return times were analyzed. The results showed that the Bayesian approach, which used as information the mean data of the BRICS countries for construction of the Normal Trivariate prior distribution, led to more accurate and accurate predictions.
id UNIFAL_cc82c4e40d5b3c74b133ae79dcb6913b
oai_identifier_str oai:repositorio.unifal-mg.edu.br:123456789/923
network_acronym_str UNIFAL
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFAL
repository_id_str
spelling Portes, Pablo Cesconhttp://lattes.cnpq.br/8194104388434526Avelar, Fabricio GoeckingMarchon, Cássia HelenaVeloso, Manoel Vitor De SouzaBeijo, Luiz Albertohttp://lattes.cnpq.br/03855082039048212017-03-14T17:42:15Z2017-02-10PORTES, Pablo Cescon. Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor. 2017. 73 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2017.https://repositorio.unifal-mg.edu.br/handle/123456789/923The Brazilian Consumer Price Index (CPI) is the index used by the Central Bank of Brazil in establishing its inflation targets. By serving as an inflation reference, the Brazilian CPI is closely monitored by foreign and Brazilian investors as well as by public managers. It is known that high and uncontrolled inflation causes distortions and economic losses in the country, so there is an interest on the part of managers and financial managers to predict maximum inflation for a certain period of time. Thus, the objective of the work was to model the maximum Brazilian CPI levels, which can occur in a four-month period. The choice of four-month periods aims to equate the analysis with the intervals between the presentations of the statements of compliance with the fiscal targets by the government. The Generalized Extreme Values (GEV) distribution was used for modeling. For the estimation of the parameters of the GEV distribution the maximum likelihood method and the Bayesian Inference were used. In the elicitation of information for the construction of the prior distributions, we used data from countries economically similar to Brazil: Russia, China and India, which belong to BRICS. In addition, different combinations of prior distribution were created, using information from these countries with different variance structures. In order to evaluate the best estimation methodology, the accuracy and precision of the estimates of the maximum inflation levels for certain return times were analyzed. The results showed that the Bayesian approach, which used as information the mean data of the BRICS countries for construction of the Normal Trivariate prior distribution, led to more accurate and accurate predictions.O Índice de Preços ao Consumidor Amplo (IPCA) é o índice utilizado pelo Banco Central do Brasil ao estabelecer suas metas inflacionárias. Por servir como uma referência de inflação, o IPCA é atentamente monitorado, tanto por investidores estrangeiros e brasileiros, quanto por gestores públicos. Sabe-se que uma inflação alta e descontrolada causa distorções e perdas econômicas no país, assim há um interesse por parte de administradores e gestores financeiros em prever a inflação máxima para um determinado período de tempo. Dessa forma, o objetivo do trabalho foi modelar os níveis máximos de IPCA, que podem ocorrer em um quadrimestre. A escolha de quadrimestres visa equiparar a análise com os intervalos entre as apresentações dos demonstrativos de cumprimento das metas fiscais por parte do Poder Executivo. Foi utilizada a distribuição Generalizada de Valores Extremos (do inglês Generalized Extreme Values - GEV) para modelagem. Para a estimação dos parâmetros da distribuição GEV utilizou-se o método da Máxima Verossimilhança e a Inferência Bayesiana. Na elicitação de informação para construção das distribuições a priori, foram utilizados dados de países economicamente semelhantes ao Brasil, a Rússia, China e Índia, os quais pertencem ao BRICS. Além disso, foram criadas diferentes combinações de distribuição a priori, usando informações desses países com diferentes estruturas de variância. Para avaliar qual melhor metodologia de estimação foram analisadas a acurácia e precisão das estimativas dos níveis máximos de inflação para determinados tempos de retorno. Os resultados permitiram observar que a abordagem Bayesiana, que utilizou como informação a média de dados dos países do BRICS para construção da distribuição a priori Normal Trivariada, levou a predições mais precisas e acuradas.Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIGapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/InflaçãoTeoria bayesiana de decisão estatisticaPrevisão estatisticaPaíses do BRICSIndices de preços ao consumidorCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidorinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-5836407828185143517-1527361517405938873reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALPortes, Pablo CesconLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/55078c10-e57b-4656-b0df-56ee9fc8f1a2/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/45d65334-2a28-4dbf-8366-c1bdf63f406f/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/0d66ef5b-dc01-4d6f-b44d-62308d43f380/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/584dd20e-c302-46c1-9ae6-aa0890a675e7/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertacao de Pablo Cescon Portes.pdfDissertacao de Pablo Cescon Portes.pdfapplication/pdf885193https://repositorio.unifal-mg.edu.br/bitstreams/334fd9fa-4885-4a9d-b993-66e54394a359/downloadcd4c6017356f975048bae98bf76778d8MD55TEXTDissertacao de Pablo Cescon Portes.pdf.txtDissertacao de Pablo Cescon Portes.pdf.txtExtracted texttext/plain103817https://repositorio.unifal-mg.edu.br/bitstreams/3e15e8f2-6574-4dff-9238-d4da1f13074c/downloadf3fdd97c0ff3d7c3802d3d05a60594ddMD58THUMBNAILDissertacao de Pablo Cescon Portes.pdf.jpgDissertacao de Pablo Cescon Portes.pdf.jpgGenerated Thumbnailimage/jpeg2325https://repositorio.unifal-mg.edu.br/bitstreams/6dbfcc12-e9f7-4951-b349-30983ebd974d/downloade2e4913eed8c8f171e4b7a0b23d96a23MD59123456789/9232025-04-14 10:01:22.601http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/923https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T13:01:22Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.pt-BR.fl_str_mv Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
title Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
spellingShingle Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
Portes, Pablo Cescon
Inflação
Teoria bayesiana de decisão estatistica
Previsão estatistica
Países do BRICS
Indices de preços ao consumidor
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
title_full Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
title_fullStr Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
title_full_unstemmed Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
title_sort Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
author Portes, Pablo Cescon
author_facet Portes, Pablo Cescon
author_role author
dc.contributor.author.fl_str_mv Portes, Pablo Cescon
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8194104388434526
dc.contributor.advisor-co1.fl_str_mv Avelar, Fabricio Goecking
dc.contributor.referee1.fl_str_mv Marchon, Cássia Helena
dc.contributor.referee2.fl_str_mv Veloso, Manoel Vitor De Souza
dc.contributor.advisor1.fl_str_mv Beijo, Luiz Alberto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0385508203904821
contributor_str_mv Avelar, Fabricio Goecking
Marchon, Cássia Helena
Veloso, Manoel Vitor De Souza
Beijo, Luiz Alberto
dc.subject.por.fl_str_mv Inflação
Teoria bayesiana de decisão estatistica
Previsão estatistica
Países do BRICS
Indices de preços ao consumidor
topic Inflação
Teoria bayesiana de decisão estatistica
Previsão estatistica
Países do BRICS
Indices de preços ao consumidor
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description The Brazilian Consumer Price Index (CPI) is the index used by the Central Bank of Brazil in establishing its inflation targets. By serving as an inflation reference, the Brazilian CPI is closely monitored by foreign and Brazilian investors as well as by public managers. It is known that high and uncontrolled inflation causes distortions and economic losses in the country, so there is an interest on the part of managers and financial managers to predict maximum inflation for a certain period of time. Thus, the objective of the work was to model the maximum Brazilian CPI levels, which can occur in a four-month period. The choice of four-month periods aims to equate the analysis with the intervals between the presentations of the statements of compliance with the fiscal targets by the government. The Generalized Extreme Values (GEV) distribution was used for modeling. For the estimation of the parameters of the GEV distribution the maximum likelihood method and the Bayesian Inference were used. In the elicitation of information for the construction of the prior distributions, we used data from countries economically similar to Brazil: Russia, China and India, which belong to BRICS. In addition, different combinations of prior distribution were created, using information from these countries with different variance structures. In order to evaluate the best estimation methodology, the accuracy and precision of the estimates of the maximum inflation levels for certain return times were analyzed. The results showed that the Bayesian approach, which used as information the mean data of the BRICS countries for construction of the Normal Trivariate prior distribution, led to more accurate and accurate predictions.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-03-14T17:42:15Z
dc.date.issued.fl_str_mv 2017-02-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PORTES, Pablo Cescon. Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor. 2017. 73 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2017.
dc.identifier.uri.fl_str_mv https://repositorio.unifal-mg.edu.br/handle/123456789/923
identifier_str_mv PORTES, Pablo Cescon. Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor. 2017. 73 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2017.
url https://repositorio.unifal-mg.edu.br/handle/123456789/923
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv -8156311678363143599
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.cnpq.fl_str_mv -5836407828185143517
dc.relation.sponsorship.fl_str_mv -1527361517405938873
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UNIFAL-MG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL
instname:Universidade Federal de Alfenas (UNIFAL)
instacron:UNIFAL
instname_str Universidade Federal de Alfenas (UNIFAL)
instacron_str UNIFAL
institution UNIFAL
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFAL
collection Biblioteca Digital de Teses e Dissertações da UNIFAL
bitstream.url.fl_str_mv https://repositorio.unifal-mg.edu.br/bitstreams/55078c10-e57b-4656-b0df-56ee9fc8f1a2/download
https://repositorio.unifal-mg.edu.br/bitstreams/45d65334-2a28-4dbf-8366-c1bdf63f406f/download
https://repositorio.unifal-mg.edu.br/bitstreams/0d66ef5b-dc01-4d6f-b44d-62308d43f380/download
https://repositorio.unifal-mg.edu.br/bitstreams/584dd20e-c302-46c1-9ae6-aa0890a675e7/download
https://repositorio.unifal-mg.edu.br/bitstreams/334fd9fa-4885-4a9d-b993-66e54394a359/download
https://repositorio.unifal-mg.edu.br/bitstreams/3e15e8f2-6574-4dff-9238-d4da1f13074c/download
https://repositorio.unifal-mg.edu.br/bitstreams/6dbfcc12-e9f7-4951-b349-30983ebd974d/download
bitstream.checksum.fl_str_mv 31555718c4fc75849dd08f27935d4f6b
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
cd4c6017356f975048bae98bf76778d8
f3fdd97c0ff3d7c3802d3d05a60594dd
e2e4913eed8c8f171e4b7a0b23d96a23
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)
repository.mail.fl_str_mv bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br
_version_ 1850508395903188992