Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Alfenas
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Estatística Aplicada e Biometria
|
| Departamento: |
Instituto de Ciências Exatas
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.unifal-mg.edu.br/handle/123456789/923 |
Resumo: | The Brazilian Consumer Price Index (CPI) is the index used by the Central Bank of Brazil in establishing its inflation targets. By serving as an inflation reference, the Brazilian CPI is closely monitored by foreign and Brazilian investors as well as by public managers. It is known that high and uncontrolled inflation causes distortions and economic losses in the country, so there is an interest on the part of managers and financial managers to predict maximum inflation for a certain period of time. Thus, the objective of the work was to model the maximum Brazilian CPI levels, which can occur in a four-month period. The choice of four-month periods aims to equate the analysis with the intervals between the presentations of the statements of compliance with the fiscal targets by the government. The Generalized Extreme Values (GEV) distribution was used for modeling. For the estimation of the parameters of the GEV distribution the maximum likelihood method and the Bayesian Inference were used. In the elicitation of information for the construction of the prior distributions, we used data from countries economically similar to Brazil: Russia, China and India, which belong to BRICS. In addition, different combinations of prior distribution were created, using information from these countries with different variance structures. In order to evaluate the best estimation methodology, the accuracy and precision of the estimates of the maximum inflation levels for certain return times were analyzed. The results showed that the Bayesian approach, which used as information the mean data of the BRICS countries for construction of the Normal Trivariate prior distribution, led to more accurate and accurate predictions. |
| id |
UNIFAL_cc82c4e40d5b3c74b133ae79dcb6913b |
|---|---|
| oai_identifier_str |
oai:repositorio.unifal-mg.edu.br:123456789/923 |
| network_acronym_str |
UNIFAL |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| repository_id_str |
|
| spelling |
Portes, Pablo Cesconhttp://lattes.cnpq.br/8194104388434526Avelar, Fabricio GoeckingMarchon, Cássia HelenaVeloso, Manoel Vitor De SouzaBeijo, Luiz Albertohttp://lattes.cnpq.br/03855082039048212017-03-14T17:42:15Z2017-02-10PORTES, Pablo Cescon. Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor. 2017. 73 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2017.https://repositorio.unifal-mg.edu.br/handle/123456789/923The Brazilian Consumer Price Index (CPI) is the index used by the Central Bank of Brazil in establishing its inflation targets. By serving as an inflation reference, the Brazilian CPI is closely monitored by foreign and Brazilian investors as well as by public managers. It is known that high and uncontrolled inflation causes distortions and economic losses in the country, so there is an interest on the part of managers and financial managers to predict maximum inflation for a certain period of time. Thus, the objective of the work was to model the maximum Brazilian CPI levels, which can occur in a four-month period. The choice of four-month periods aims to equate the analysis with the intervals between the presentations of the statements of compliance with the fiscal targets by the government. The Generalized Extreme Values (GEV) distribution was used for modeling. For the estimation of the parameters of the GEV distribution the maximum likelihood method and the Bayesian Inference were used. In the elicitation of information for the construction of the prior distributions, we used data from countries economically similar to Brazil: Russia, China and India, which belong to BRICS. In addition, different combinations of prior distribution were created, using information from these countries with different variance structures. In order to evaluate the best estimation methodology, the accuracy and precision of the estimates of the maximum inflation levels for certain return times were analyzed. The results showed that the Bayesian approach, which used as information the mean data of the BRICS countries for construction of the Normal Trivariate prior distribution, led to more accurate and accurate predictions.O Índice de Preços ao Consumidor Amplo (IPCA) é o índice utilizado pelo Banco Central do Brasil ao estabelecer suas metas inflacionárias. Por servir como uma referência de inflação, o IPCA é atentamente monitorado, tanto por investidores estrangeiros e brasileiros, quanto por gestores públicos. Sabe-se que uma inflação alta e descontrolada causa distorções e perdas econômicas no país, assim há um interesse por parte de administradores e gestores financeiros em prever a inflação máxima para um determinado período de tempo. Dessa forma, o objetivo do trabalho foi modelar os níveis máximos de IPCA, que podem ocorrer em um quadrimestre. A escolha de quadrimestres visa equiparar a análise com os intervalos entre as apresentações dos demonstrativos de cumprimento das metas fiscais por parte do Poder Executivo. Foi utilizada a distribuição Generalizada de Valores Extremos (do inglês Generalized Extreme Values - GEV) para modelagem. Para a estimação dos parâmetros da distribuição GEV utilizou-se o método da Máxima Verossimilhança e a Inferência Bayesiana. Na elicitação de informação para construção das distribuições a priori, foram utilizados dados de países economicamente semelhantes ao Brasil, a Rússia, China e Índia, os quais pertencem ao BRICS. Além disso, foram criadas diferentes combinações de distribuição a priori, usando informações desses países com diferentes estruturas de variância. Para avaliar qual melhor metodologia de estimação foram analisadas a acurácia e precisão das estimativas dos níveis máximos de inflação para determinados tempos de retorno. Os resultados permitiram observar que a abordagem Bayesiana, que utilizou como informação a média de dados dos países do BRICS para construção da distribuição a priori Normal Trivariada, levou a predições mais precisas e acuradas.Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIGapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/InflaçãoTeoria bayesiana de decisão estatisticaPrevisão estatisticaPaíses do BRICSIndices de preços ao consumidorCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAModelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidorinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-5836407828185143517-1527361517405938873reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALPortes, Pablo CesconLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/55078c10-e57b-4656-b0df-56ee9fc8f1a2/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/45d65334-2a28-4dbf-8366-c1bdf63f406f/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/0d66ef5b-dc01-4d6f-b44d-62308d43f380/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/584dd20e-c302-46c1-9ae6-aa0890a675e7/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertacao de Pablo Cescon Portes.pdfDissertacao de Pablo Cescon Portes.pdfapplication/pdf885193https://repositorio.unifal-mg.edu.br/bitstreams/334fd9fa-4885-4a9d-b993-66e54394a359/downloadcd4c6017356f975048bae98bf76778d8MD55TEXTDissertacao de Pablo Cescon Portes.pdf.txtDissertacao de Pablo Cescon Portes.pdf.txtExtracted texttext/plain103817https://repositorio.unifal-mg.edu.br/bitstreams/3e15e8f2-6574-4dff-9238-d4da1f13074c/downloadf3fdd97c0ff3d7c3802d3d05a60594ddMD58THUMBNAILDissertacao de Pablo Cescon Portes.pdf.jpgDissertacao de Pablo Cescon Portes.pdf.jpgGenerated Thumbnailimage/jpeg2325https://repositorio.unifal-mg.edu.br/bitstreams/6dbfcc12-e9f7-4951-b349-30983ebd974d/downloade2e4913eed8c8f171e4b7a0b23d96a23MD59123456789/9232025-04-14 10:01:22.601http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/923https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T13:01:22Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.pt-BR.fl_str_mv |
Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor |
| title |
Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor |
| spellingShingle |
Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor Portes, Pablo Cescon Inflação Teoria bayesiana de decisão estatistica Previsão estatistica Países do BRICS Indices de preços ao consumidor CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| title_short |
Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor |
| title_full |
Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor |
| title_fullStr |
Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor |
| title_full_unstemmed |
Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor |
| title_sort |
Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor |
| author |
Portes, Pablo Cescon |
| author_facet |
Portes, Pablo Cescon |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Portes, Pablo Cescon |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8194104388434526 |
| dc.contributor.advisor-co1.fl_str_mv |
Avelar, Fabricio Goecking |
| dc.contributor.referee1.fl_str_mv |
Marchon, Cássia Helena |
| dc.contributor.referee2.fl_str_mv |
Veloso, Manoel Vitor De Souza |
| dc.contributor.advisor1.fl_str_mv |
Beijo, Luiz Alberto |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0385508203904821 |
| contributor_str_mv |
Avelar, Fabricio Goecking Marchon, Cássia Helena Veloso, Manoel Vitor De Souza Beijo, Luiz Alberto |
| dc.subject.por.fl_str_mv |
Inflação Teoria bayesiana de decisão estatistica Previsão estatistica Países do BRICS Indices de preços ao consumidor |
| topic |
Inflação Teoria bayesiana de decisão estatistica Previsão estatistica Países do BRICS Indices de preços ao consumidor CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
| description |
The Brazilian Consumer Price Index (CPI) is the index used by the Central Bank of Brazil in establishing its inflation targets. By serving as an inflation reference, the Brazilian CPI is closely monitored by foreign and Brazilian investors as well as by public managers. It is known that high and uncontrolled inflation causes distortions and economic losses in the country, so there is an interest on the part of managers and financial managers to predict maximum inflation for a certain period of time. Thus, the objective of the work was to model the maximum Brazilian CPI levels, which can occur in a four-month period. The choice of four-month periods aims to equate the analysis with the intervals between the presentations of the statements of compliance with the fiscal targets by the government. The Generalized Extreme Values (GEV) distribution was used for modeling. For the estimation of the parameters of the GEV distribution the maximum likelihood method and the Bayesian Inference were used. In the elicitation of information for the construction of the prior distributions, we used data from countries economically similar to Brazil: Russia, China and India, which belong to BRICS. In addition, different combinations of prior distribution were created, using information from these countries with different variance structures. In order to evaluate the best estimation methodology, the accuracy and precision of the estimates of the maximum inflation levels for certain return times were analyzed. The results showed that the Bayesian approach, which used as information the mean data of the BRICS countries for construction of the Normal Trivariate prior distribution, led to more accurate and accurate predictions. |
| publishDate |
2017 |
| dc.date.accessioned.fl_str_mv |
2017-03-14T17:42:15Z |
| dc.date.issued.fl_str_mv |
2017-02-10 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
PORTES, Pablo Cescon. Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor. 2017. 73 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2017. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.unifal-mg.edu.br/handle/123456789/923 |
| identifier_str_mv |
PORTES, Pablo Cescon. Modelagem Bayesiana dos níveis máximos do Índice de Preços ao Consumidor. 2017. 73 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2017. |
| url |
https://repositorio.unifal-mg.edu.br/handle/123456789/923 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.department.fl_str_mv |
-8156311678363143599 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.cnpq.fl_str_mv |
-5836407828185143517 |
| dc.relation.sponsorship.fl_str_mv |
-1527361517405938873 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Estatística Aplicada e Biometria |
| dc.publisher.initials.fl_str_mv |
UNIFAL-MG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL instname:Universidade Federal de Alfenas (UNIFAL) instacron:UNIFAL |
| instname_str |
Universidade Federal de Alfenas (UNIFAL) |
| instacron_str |
UNIFAL |
| institution |
UNIFAL |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| collection |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| bitstream.url.fl_str_mv |
https://repositorio.unifal-mg.edu.br/bitstreams/55078c10-e57b-4656-b0df-56ee9fc8f1a2/download https://repositorio.unifal-mg.edu.br/bitstreams/45d65334-2a28-4dbf-8366-c1bdf63f406f/download https://repositorio.unifal-mg.edu.br/bitstreams/0d66ef5b-dc01-4d6f-b44d-62308d43f380/download https://repositorio.unifal-mg.edu.br/bitstreams/584dd20e-c302-46c1-9ae6-aa0890a675e7/download https://repositorio.unifal-mg.edu.br/bitstreams/334fd9fa-4885-4a9d-b993-66e54394a359/download https://repositorio.unifal-mg.edu.br/bitstreams/3e15e8f2-6574-4dff-9238-d4da1f13074c/download https://repositorio.unifal-mg.edu.br/bitstreams/6dbfcc12-e9f7-4951-b349-30983ebd974d/download |
| bitstream.checksum.fl_str_mv |
31555718c4fc75849dd08f27935d4f6b 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e cd4c6017356f975048bae98bf76778d8 f3fdd97c0ff3d7c3802d3d05a60594dd e2e4913eed8c8f171e4b7a0b23d96a23 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL) |
| repository.mail.fl_str_mv |
bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br |
| _version_ |
1850508395903188992 |