Polinômios ortogonais de Laurent na reta real e no círculo unitário

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Costa, Marisa de Souza [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/100067
Resumo: Neste trabalho são obtidos diversos resultados sobre duas classes distintas de po-linômios ortogonais de Laurent, uma delas definida na reta real, chamados de polinômios L-ortogonais, e a outra definida no círculo unitário. Primeiramente, analisamos a conexão existente entre duas sequências de polinômios L-ortogonais {Q (0) n } e {Q (1) n } associados a duas medidas positivas fortes dψ0 e dψ1 definidas em [a,b] e relacionadas por (t −κ)dψ1 = γdψ0 , onde (t −κ)/γ é positivo para t ∈(a,b). Nossos estudos podem ser aplicados à geração de novos exemplos de polinômios L-ortogonais. Dentre os resultados obtidos, temos também a monotonicidade dos zeros dos polinômios {Q (1) n }. Em seguida, consideramos a classe de polinômios ortogonais de Laurent no cír-culo unitário {2 Φ1 ( q−n ,qb+1 ; q−c + b− n ; q,q− c+ d −1 z)}∞ n=0 , definidos a partir de funções q-hip ergeométricas, onde 0 < q < 1 e os parâmetros complexos b,c e d são tais que b ̸= −1,−2 ,..., c −b + 1 ̸= −1,−2,..., Re( d) > 0 e Re(c −d + 2) > 0. Obtivemos várias propriedades desses polinômios, dentre elas expressões explícitas para os co eficien-tes da relação de recorrência, momentos e ortogonalidade, além de seu comportamento assintótico. Fazendo uma escolha...
id UNSP_b20ed90425084bd3f68c2ea0965ec6fa
oai_identifier_str oai:repositorio.unesp.br:11449/100067
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Polinômios ortogonais de Laurent na reta real e no círculo unitárioCálculoFunções hiperbolicasPolinomios ortogonaisOrthogonal Laurent polynomialsNeste trabalho são obtidos diversos resultados sobre duas classes distintas de po-linômios ortogonais de Laurent, uma delas definida na reta real, chamados de polinômios L-ortogonais, e a outra definida no círculo unitário. Primeiramente, analisamos a conexão existente entre duas sequências de polinômios L-ortogonais {Q (0) n } e {Q (1) n } associados a duas medidas positivas fortes dψ0 e dψ1 definidas em [a,b] e relacionadas por (t −κ)dψ1 = γdψ0 , onde (t −κ)/γ é positivo para t ∈(a,b). Nossos estudos podem ser aplicados à geração de novos exemplos de polinômios L-ortogonais. Dentre os resultados obtidos, temos também a monotonicidade dos zeros dos polinômios {Q (1) n }. Em seguida, consideramos a classe de polinômios ortogonais de Laurent no cír-culo unitário {2 Φ1 ( q−n ,qb+1 ; q−c + b− n ; q,q− c+ d −1 z)}∞ n=0 , definidos a partir de funções q-hip ergeométricas, onde 0 < q < 1 e os parâmetros complexos b,c e d são tais que b ̸= −1,−2 ,..., c −b + 1 ̸= −1,−2,..., Re( d) > 0 e Re(c −d + 2) > 0. Obtivemos várias propriedades desses polinômios, dentre elas expressões explícitas para os co eficien-tes da relação de recorrência, momentos e ortogonalidade, além de seu comportamento assintótico. Fazendo uma escolha...Several results concerning two different classes of orthogonal Laurent polynomials are obtained, one defined on the real line, called L-orthogonal p olynomials, and another class defined on the unit circle. First, we lo ok at the connection b etween two sequences of L-orthogonal p olynomials {Q (0) n } and {Q (1) n } asso ciated with two strong p ositive measures dψ0 and dψ1 defined on [a,b] and related to each other by ( t −κ)dψ1 = γdψ0 , where ( t −κ)/γ is p ositive when t ∈(a,b). As applications of our study, numerical generation of new L-orthogonal p olynomials and monotonicity prop erties of the zeros of the p olynomials {Q (1) n }are lo oked at. Then, we consider the class of orthogonal Laurent p olynomials on the unit circle {2 Φ 1 (q− n ,qb+1 ; q− c +b− n ; q,q− c +d − 1 z)}∞ n=0 , defined from q-hyp ergeometric functions, where 0 < q < 1 and the complex parameters b,c and d are such that b ̸= −1,−2 ,..., c−b+ 1 ̸= −1,−2 ,..., Re( d) > 0 e Re(c−d+ 2) > 0. Several prop erties of these p olynomi-als are given, like explicit expressions for recurrence co efficients, moments, orthogonality and also asymptotics. By sp ecial choice of... (Complete abstract click electronic access below)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista (Unesp)Ranga, Alagacone Sri [UNESP]Andrade, Eliana Xavier Linhares de [UNESP]Universidade Estadual Paulista (Unesp)Costa, Marisa de Souza [UNESP]2014-06-11T19:30:27Z2014-06-11T19:30:27Z2012-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis80 f. : il.application/pdfCOSTA, Marisa de Souza. Polinômios ortogonais de Laurent na reta real e no círculo unitário. 2012. 80 f. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2012.http://hdl.handle.net/11449/100067000688563costa_ms_dr_sjrp.pdf33004153071P03587123309745610Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-11-06T12:34:08Zoai:repositorio.unesp.br:11449/100067Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-06T12:34:08Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Polinômios ortogonais de Laurent na reta real e no círculo unitário
title Polinômios ortogonais de Laurent na reta real e no círculo unitário
spellingShingle Polinômios ortogonais de Laurent na reta real e no círculo unitário
Costa, Marisa de Souza [UNESP]
Cálculo
Funções hiperbolicas
Polinomios ortogonais
Orthogonal Laurent polynomials
title_short Polinômios ortogonais de Laurent na reta real e no círculo unitário
title_full Polinômios ortogonais de Laurent na reta real e no círculo unitário
title_fullStr Polinômios ortogonais de Laurent na reta real e no círculo unitário
title_full_unstemmed Polinômios ortogonais de Laurent na reta real e no círculo unitário
title_sort Polinômios ortogonais de Laurent na reta real e no círculo unitário
author Costa, Marisa de Souza [UNESP]
author_facet Costa, Marisa de Souza [UNESP]
author_role author
dc.contributor.none.fl_str_mv Ranga, Alagacone Sri [UNESP]
Andrade, Eliana Xavier Linhares de [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Costa, Marisa de Souza [UNESP]
dc.subject.por.fl_str_mv Cálculo
Funções hiperbolicas
Polinomios ortogonais
Orthogonal Laurent polynomials
topic Cálculo
Funções hiperbolicas
Polinomios ortogonais
Orthogonal Laurent polynomials
description Neste trabalho são obtidos diversos resultados sobre duas classes distintas de po-linômios ortogonais de Laurent, uma delas definida na reta real, chamados de polinômios L-ortogonais, e a outra definida no círculo unitário. Primeiramente, analisamos a conexão existente entre duas sequências de polinômios L-ortogonais {Q (0) n } e {Q (1) n } associados a duas medidas positivas fortes dψ0 e dψ1 definidas em [a,b] e relacionadas por (t −κ)dψ1 = γdψ0 , onde (t −κ)/γ é positivo para t ∈(a,b). Nossos estudos podem ser aplicados à geração de novos exemplos de polinômios L-ortogonais. Dentre os resultados obtidos, temos também a monotonicidade dos zeros dos polinômios {Q (1) n }. Em seguida, consideramos a classe de polinômios ortogonais de Laurent no cír-culo unitário {2 Φ1 ( q−n ,qb+1 ; q−c + b− n ; q,q− c+ d −1 z)}∞ n=0 , definidos a partir de funções q-hip ergeométricas, onde 0 < q < 1 e os parâmetros complexos b,c e d são tais que b ̸= −1,−2 ,..., c −b + 1 ̸= −1,−2,..., Re( d) > 0 e Re(c −d + 2) > 0. Obtivemos várias propriedades desses polinômios, dentre elas expressões explícitas para os co eficien-tes da relação de recorrência, momentos e ortogonalidade, além de seu comportamento assintótico. Fazendo uma escolha...
publishDate 2012
dc.date.none.fl_str_mv 2012-04-20
2014-06-11T19:30:27Z
2014-06-11T19:30:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv COSTA, Marisa de Souza. Polinômios ortogonais de Laurent na reta real e no círculo unitário. 2012. 80 f. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2012.
http://hdl.handle.net/11449/100067
000688563
costa_ms_dr_sjrp.pdf
33004153071P0
3587123309745610
identifier_str_mv COSTA, Marisa de Souza. Polinômios ortogonais de Laurent na reta real e no círculo unitário. 2012. 80 f. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2012.
000688563
costa_ms_dr_sjrp.pdf
33004153071P0
3587123309745610
url http://hdl.handle.net/11449/100067
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 80 f. : il.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954435693772800