Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Pontes, Fabrício José [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/103054
Resumo: O presente trabalho oferece contribuições à modelagem da rugosidade da peça em processos de usinagem por meio de redes neurais artificiais. Propõe-se um método para o projeto de redes. Perceptron Multi-Camada (Multi-Layer Percepton, ou MLO) e Função de Base radial Radial Basis Function, ou RBF) otimizadas para a predição da rugosidade da pela (Ra). Desenvolve-se um algoritmo que utiliza de forma hibrida a metodologia do projeto de experimentos por meio das técnicas dos fatoriais completose de Variações Evolucionária em Operações (EVOP). A estratégia adotada é a de utilizar o projeto de experimentos na busca de configurações de rede que favoreçam estatisticamente o desempenho na tarefa de predição. Parâmetro de corte dos processos de usinagem são utilizados como entradas das redes. O erro médio absoluto em porcentagem (MAE %) do decil inferioir das observações de predição para o conjunto de testes é utilizado como medida de desempnho dos modelos. Com o objetivo de validar o métido proposto são empregados casos de treinamento gerados a partir de daods obtidos de trabalhos de literatura e de experimentos de torneamento do aço ABNT 121.13. O método proposto leva á redução significativa do erro de predição da rugosidade nas operações de usinagem estudadas, quando se compara seu desempenho ao apresentado por modelos de regressão, aos resultados relatados pela literatura e ao desempenho de modelos neurais propostos por um pacotecomputacional comercial para otimização de configurações de rede. As redes projetadas segundo o método proposto possuem dispersão dos erros de predição significativamente reduzidos na comparação. Observa-se ainda que rede MLP atingem resultados estatisticamente superior aos obtidos pelas melhores redes RBF
id UNSP_db4ec0fa91fc70f82537c09ad85f7221
oai_identifier_str oai:repositorio.unesp.br:11449/103054
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentosRedes neurais (Computação)Neural networksO presente trabalho oferece contribuições à modelagem da rugosidade da peça em processos de usinagem por meio de redes neurais artificiais. Propõe-se um método para o projeto de redes. Perceptron Multi-Camada (Multi-Layer Percepton, ou MLO) e Função de Base radial Radial Basis Function, ou RBF) otimizadas para a predição da rugosidade da pela (Ra). Desenvolve-se um algoritmo que utiliza de forma hibrida a metodologia do projeto de experimentos por meio das técnicas dos fatoriais completose de Variações Evolucionária em Operações (EVOP). A estratégia adotada é a de utilizar o projeto de experimentos na busca de configurações de rede que favoreçam estatisticamente o desempenho na tarefa de predição. Parâmetro de corte dos processos de usinagem são utilizados como entradas das redes. O erro médio absoluto em porcentagem (MAE %) do decil inferioir das observações de predição para o conjunto de testes é utilizado como medida de desempnho dos modelos. Com o objetivo de validar o métido proposto são empregados casos de treinamento gerados a partir de daods obtidos de trabalhos de literatura e de experimentos de torneamento do aço ABNT 121.13. O método proposto leva á redução significativa do erro de predição da rugosidade nas operações de usinagem estudadas, quando se compara seu desempenho ao apresentado por modelos de regressão, aos resultados relatados pela literatura e ao desempenho de modelos neurais propostos por um pacotecomputacional comercial para otimização de configurações de rede. As redes projetadas segundo o método proposto possuem dispersão dos erros de predição significativamente reduzidos na comparação. Observa-se ainda que rede MLP atingem resultados estatisticamente superior aos obtidos pelas melhores redes RBFThe present work offers some contributions to the area of surface roughness modeling by Artificial Neural Network in machining processes. Ir proposes a method for the project networks of MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) architectures optimized for prediction of Average Surface Roughness (Ru). The methid is expressed in the format of an algorithm employing two techniques from the DOE (Design of Experiments) methodology: Full factorials and Evolutionary Operations(EVOP). The strategy adopted consists in the sistematic use of DOE in a search for network configurations that benefits performance in roughess prediction. Cutting para meters from machining operations are employed as network inputs. Themean absolute error in percentage (MAE%) of the lower decile of the predictions for the test set is used as a figure of merit for network performance. In order to validate the method, data sets retrieved from literature, as well as results of experiments with AISI/SAE free-machining steel, are employed to form training and test data sets for the networks. The proposed algorithm leads to significant reduction in prediction error for surface roughness when compared to the performance delivred by a regression model, by the networks proposed by the original studies data was borrowed from and when compared models proposed by a software package intend to search automatically for optimal network configurations. In addition, networks designed acording to the proposed algorithm displayed reduced dispersion of prediction error for surface roughness when compared to the performance delivered by a regression model, by the networks proposed by the original studies data was borrowed from and when compared to neural models proposed by a software package intended to searchautomatically for optimal network configurations. In addition, networks designed according to the proposed algorith ... (Complete abstract click electronic access below)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista (Unesp)Silva, Messias Borges [UNESP]Paiva, Anderson Paulo de [UNESP]Universidade Estadual Paulista (Unesp)Pontes, Fabrício José [UNESP]2014-06-11T19:32:22Z2014-06-11T19:32:22Z2011-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis259 f. : il., gráfs., tabs.application/pdfPONTES, Fabrício José. Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos. 2011. 259 f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2011.http://hdl.handle.net/11449/103054000671015pontes_fj_dr_guara.pdf33004080027P69507655803234261Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-07-04T13:33:09Zoai:repositorio.unesp.br:11449/103054Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:54:58.789640Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos
title Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos
spellingShingle Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos
Pontes, Fabrício José [UNESP]
Redes neurais (Computação)
Neural networks
title_short Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos
title_full Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos
title_fullStr Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos
title_full_unstemmed Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos
title_sort Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos
author Pontes, Fabrício José [UNESP]
author_facet Pontes, Fabrício José [UNESP]
author_role author
dc.contributor.none.fl_str_mv Silva, Messias Borges [UNESP]
Paiva, Anderson Paulo de [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Pontes, Fabrício José [UNESP]
dc.subject.por.fl_str_mv Redes neurais (Computação)
Neural networks
topic Redes neurais (Computação)
Neural networks
description O presente trabalho oferece contribuições à modelagem da rugosidade da peça em processos de usinagem por meio de redes neurais artificiais. Propõe-se um método para o projeto de redes. Perceptron Multi-Camada (Multi-Layer Percepton, ou MLO) e Função de Base radial Radial Basis Function, ou RBF) otimizadas para a predição da rugosidade da pela (Ra). Desenvolve-se um algoritmo que utiliza de forma hibrida a metodologia do projeto de experimentos por meio das técnicas dos fatoriais completose de Variações Evolucionária em Operações (EVOP). A estratégia adotada é a de utilizar o projeto de experimentos na busca de configurações de rede que favoreçam estatisticamente o desempenho na tarefa de predição. Parâmetro de corte dos processos de usinagem são utilizados como entradas das redes. O erro médio absoluto em porcentagem (MAE %) do decil inferioir das observações de predição para o conjunto de testes é utilizado como medida de desempnho dos modelos. Com o objetivo de validar o métido proposto são empregados casos de treinamento gerados a partir de daods obtidos de trabalhos de literatura e de experimentos de torneamento do aço ABNT 121.13. O método proposto leva á redução significativa do erro de predição da rugosidade nas operações de usinagem estudadas, quando se compara seu desempenho ao apresentado por modelos de regressão, aos resultados relatados pela literatura e ao desempenho de modelos neurais propostos por um pacotecomputacional comercial para otimização de configurações de rede. As redes projetadas segundo o método proposto possuem dispersão dos erros de predição significativamente reduzidos na comparação. Observa-se ainda que rede MLP atingem resultados estatisticamente superior aos obtidos pelas melhores redes RBF
publishDate 2011
dc.date.none.fl_str_mv 2011-08-09
2014-06-11T19:32:22Z
2014-06-11T19:32:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PONTES, Fabrício José. Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos. 2011. 259 f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2011.
http://hdl.handle.net/11449/103054
000671015
pontes_fj_dr_guara.pdf
33004080027P6
9507655803234261
identifier_str_mv PONTES, Fabrício José. Projeto otimizado de redes neurais artificiais para predição da rugosidade em processos de usinagem com a utilização da metodologia de projeto de experimentos. 2011. 259 f. Tese (doutorado) - Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2011.
000671015
pontes_fj_dr_guara.pdf
33004080027P6
9507655803234261
url http://hdl.handle.net/11449/103054
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 259 f. : il., gráfs., tabs.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808130242785574912