Exportação concluída — 

Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Costa, Márcus Vinícius Lobo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-22032024-142104/
Resumo: A análise de imagens médicas desempenha um papel importante na tomada de decisão de médicos especialistas. Especificamente na deteção da COVID-19, as abordagens de Aprendizado Profundo (AP) e a abordagem Radiômica obtiveram resultados promissores no decorrer dos últimos anos. No entanto, os resultados por meio de aprendizado profundo são difíceis de interpretar/visualizar e a abordagem radiômica elenca etapas sucessivas, como: a aquisição de imagens, o processamento de imagens, a segmentação, a extração de características e a análise. Neste contexto, este trabalho de Mestrado propõe a abordagem DEELE-Rad (Deep Learningbased Radiomics), que utiliza a integração de aprendizado profundo e a abordagem radiômica, com intuito de auxiliar na detecção de COVID-19. O DEELE-Rad utiliza modelos de aprendizado profundo para extrair 100, 128, 200, e 300 características radiômicas profundas relevantes para avaliar a COVID-19. Utilizando várias fontes de imagens, com 392 exames representativos de radiografia de tórax (raio-X). Desta maneira, evitam-se etapas sucessivas da radiômica utilizando aprendizado profundo e aplicando ajuste-fino nas redes da VGG-16, ResNet50V2 e a DenseNet201. O DEELE-Rad considera um conjunto de algoritmos de Aprendizado de Máquina (AM) para validar os resultados, fornecendo um comitê (ensemble) de classificadores para classificação de COVID-19. Com resultados experimentais do DEELE-Rad, foi possível observar que o DEELE-Rad obteve um melhor desempenho quando utilizou-se 300 características radiômicas profundas provenientes da DenseNet201, tornando-o mais preciso em até 8,8% comparada aos modelos de aprendizado profundo de ponta a ponta. O DEELE-Rad têm como proposta a análise e avaliação visual de características radiômicas profundas, a fim de apresentar interpretabilidade e explicabilidade tornando-o mais explicável. De maneira geral, o DEELE-Rad pode aumentar o desempenho da classificação binária em um cenário real. Por fim, destacamos que o DEELE-Rad pode ser adaptado para criar outras ferramentas de radiômica baseadas em aprendizado profundo e pode fornecer perspectivas de interpretabilidade e explicabilidade de radiômicas profundas por meio dos modelos de aprendizado profundo.
id USP_3bc3209b181f1132af450d3d64e0abfc
oai_identifier_str oai:teses.usp.br:tde-22032024-142104
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19Exploiting Deep Radiomics Features in Deep Learning Models using COVID-19 Medical ImagesAprendizado profundoCaracterísticas profundasDeep featuresDeep learningDeep radiomicsImagem médicaMedical imagingRadiômicaRadiômica profundaRadiomicsA análise de imagens médicas desempenha um papel importante na tomada de decisão de médicos especialistas. Especificamente na deteção da COVID-19, as abordagens de Aprendizado Profundo (AP) e a abordagem Radiômica obtiveram resultados promissores no decorrer dos últimos anos. No entanto, os resultados por meio de aprendizado profundo são difíceis de interpretar/visualizar e a abordagem radiômica elenca etapas sucessivas, como: a aquisição de imagens, o processamento de imagens, a segmentação, a extração de características e a análise. Neste contexto, este trabalho de Mestrado propõe a abordagem DEELE-Rad (Deep Learningbased Radiomics), que utiliza a integração de aprendizado profundo e a abordagem radiômica, com intuito de auxiliar na detecção de COVID-19. O DEELE-Rad utiliza modelos de aprendizado profundo para extrair 100, 128, 200, e 300 características radiômicas profundas relevantes para avaliar a COVID-19. Utilizando várias fontes de imagens, com 392 exames representativos de radiografia de tórax (raio-X). Desta maneira, evitam-se etapas sucessivas da radiômica utilizando aprendizado profundo e aplicando ajuste-fino nas redes da VGG-16, ResNet50V2 e a DenseNet201. O DEELE-Rad considera um conjunto de algoritmos de Aprendizado de Máquina (AM) para validar os resultados, fornecendo um comitê (ensemble) de classificadores para classificação de COVID-19. Com resultados experimentais do DEELE-Rad, foi possível observar que o DEELE-Rad obteve um melhor desempenho quando utilizou-se 300 características radiômicas profundas provenientes da DenseNet201, tornando-o mais preciso em até 8,8% comparada aos modelos de aprendizado profundo de ponta a ponta. O DEELE-Rad têm como proposta a análise e avaliação visual de características radiômicas profundas, a fim de apresentar interpretabilidade e explicabilidade tornando-o mais explicável. De maneira geral, o DEELE-Rad pode aumentar o desempenho da classificação binária em um cenário real. Por fim, destacamos que o DEELE-Rad pode ser adaptado para criar outras ferramentas de radiômica baseadas em aprendizado profundo e pode fornecer perspectivas de interpretabilidade e explicabilidade de radiômicas profundas por meio dos modelos de aprendizado profundo.Medical image analysis plays an essential role in aiding physicians in decision-making. Specifically in detecting COVID-19, deep learning (DL) and radiomics approaches have achieved promising results in recent years. However, deep learning results are hard to interpret/visualize, and the radiomic approach encompasses successive steps, such as image acquisition, image processing, segmentation, feature extraction, and analysis. In this context, this Masters thesis proposes the DEELE-Rad (Deep Learning-based Radiomics) approach, which integrates deep learning and the radiomic approaches, aiding in detecting COVID-19. DEELE-Rad uses deep learning models to extract 100, 128, 200, and 300 deep radiomic features relevant to assessing COVID-19. Multiple image sources, with 392 representative chest X-ray examinations. This way, successive steps of radiomics are avoided using deep learning and fine-tuning on the VGG-16, ResNet50V2, and DenseNet201 networks. The DEELE-Rad considers a set of Machine Learning (ML) algorithms to further validate our results, providing an ensemble learning model to detect COVID-19. With experimental results from DEELE-Rad, it was possible to observe that DEELERad performed better when using 300 deep radiomic features from DenseNet201, making it more accurate by up to 8.8% compared to end-to-end deep learning models. DEELE-Rad aims to visually analyze and evaluate deep radiomic features to make them more interpretable and explainable. Overall, DEELE-Rad can increase binary classification performance in a real scenario. Finally, we highlight that DEELE-Rad can be adapted to create other deep learning-based radiomics tools and can provide insights into the interpretability and explainability of deep radiomics through deep learning models.Biblioteca Digitais de Teses e Dissertações da USPTraina, Agma Juci MachadoCosta, Márcus Vinícius Lobo2024-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-22032024-142104/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-03-22T17:48:02Zoai:teses.usp.br:tde-22032024-142104Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-03-22T17:48:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19
Exploiting Deep Radiomics Features in Deep Learning Models using COVID-19 Medical Images
title Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19
spellingShingle Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19
Costa, Márcus Vinícius Lobo
Aprendizado profundo
Características profundas
Deep features
Deep learning
Deep radiomics
Imagem médica
Medical imaging
Radiômica
Radiômica profunda
Radiomics
title_short Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19
title_full Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19
title_fullStr Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19
title_full_unstemmed Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19
title_sort Explorando Características Radiômicas Profundas em Modelos de Aprendizado Profundo por meio de Imagens Médicas de COVID-19
author Costa, Márcus Vinícius Lobo
author_facet Costa, Márcus Vinícius Lobo
author_role author
dc.contributor.none.fl_str_mv Traina, Agma Juci Machado
dc.contributor.author.fl_str_mv Costa, Márcus Vinícius Lobo
dc.subject.por.fl_str_mv Aprendizado profundo
Características profundas
Deep features
Deep learning
Deep radiomics
Imagem médica
Medical imaging
Radiômica
Radiômica profunda
Radiomics
topic Aprendizado profundo
Características profundas
Deep features
Deep learning
Deep radiomics
Imagem médica
Medical imaging
Radiômica
Radiômica profunda
Radiomics
description A análise de imagens médicas desempenha um papel importante na tomada de decisão de médicos especialistas. Especificamente na deteção da COVID-19, as abordagens de Aprendizado Profundo (AP) e a abordagem Radiômica obtiveram resultados promissores no decorrer dos últimos anos. No entanto, os resultados por meio de aprendizado profundo são difíceis de interpretar/visualizar e a abordagem radiômica elenca etapas sucessivas, como: a aquisição de imagens, o processamento de imagens, a segmentação, a extração de características e a análise. Neste contexto, este trabalho de Mestrado propõe a abordagem DEELE-Rad (Deep Learningbased Radiomics), que utiliza a integração de aprendizado profundo e a abordagem radiômica, com intuito de auxiliar na detecção de COVID-19. O DEELE-Rad utiliza modelos de aprendizado profundo para extrair 100, 128, 200, e 300 características radiômicas profundas relevantes para avaliar a COVID-19. Utilizando várias fontes de imagens, com 392 exames representativos de radiografia de tórax (raio-X). Desta maneira, evitam-se etapas sucessivas da radiômica utilizando aprendizado profundo e aplicando ajuste-fino nas redes da VGG-16, ResNet50V2 e a DenseNet201. O DEELE-Rad considera um conjunto de algoritmos de Aprendizado de Máquina (AM) para validar os resultados, fornecendo um comitê (ensemble) de classificadores para classificação de COVID-19. Com resultados experimentais do DEELE-Rad, foi possível observar que o DEELE-Rad obteve um melhor desempenho quando utilizou-se 300 características radiômicas profundas provenientes da DenseNet201, tornando-o mais preciso em até 8,8% comparada aos modelos de aprendizado profundo de ponta a ponta. O DEELE-Rad têm como proposta a análise e avaliação visual de características radiômicas profundas, a fim de apresentar interpretabilidade e explicabilidade tornando-o mais explicável. De maneira geral, o DEELE-Rad pode aumentar o desempenho da classificação binária em um cenário real. Por fim, destacamos que o DEELE-Rad pode ser adaptado para criar outras ferramentas de radiômica baseadas em aprendizado profundo e pode fornecer perspectivas de interpretabilidade e explicabilidade de radiômicas profundas por meio dos modelos de aprendizado profundo.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-22032024-142104/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-22032024-142104/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258382102167552