Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11137/tde-08102024-155059/ |
Resumo: | Agriculture currently faces several challenges associated with the imbalance between population growth and food production, as well as climate change. To overcome these challenges, breeding must utilize all necessary technologies to develop crops with higher productivity, resistance, stability, and climate-smart traits. The breeding process is generally evaluated regarding selection gain, which depends on several parameters in the breeders equation that have significantly changed in recent years. These changes have been enabled by advances in different omics such as phenomics, enviromics, and genomics. In this way, we applied some of the most recent breeding tools to contribute to agriculture in two case studies. In the second chapter, we simultaneously used association mapping and graphical networks to identify genomic regions responsible for resistance to one of the most significant fungi affecting raspberries. We used parents from more than one species, differing in economic importance and resistance, and employed both classical phenotyping techniques and highthroughput phenotyping to characterize this interspecific population. In the final chapter, we demonstrated an efficient way to optimize Multi-Environment Trials using enviromics. Additionally, we evaluated the environmental covariates that most influence rice yield in the US Rice Belt and characterized these Target Population of Environments (TPEs). Despite the US rice production representing 5% of the worlds rice production and having tripled its imports since 2001, there is still a need for work characterizing its TPEs. Thus, this work presents itself as a valuable resource for modern breeding, contributing to the production of more resistant, productive, and climate-smart varieties to address the current breeding challenges. |
| id |
USP_468f736c8d9d86fc7f2e08ad382a4d54 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-08102024-155059 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberryOtimizando programas de melhoramento com o uso de ferramentas modernas: estudos de caso em arroz e framboesaAgriculturaAgricultureBreedingDisease resistanceEnsaios multi-ambienteEnvirotipagemEnvirotypingEquações de modelos mistosFenotipagemGenotipagemGenotypingGraphical networkGWASGWASMelhoramentoMixed model equationsMulti-environment trialsPhenotypingRedes gráficasResistência a doençasAgriculture currently faces several challenges associated with the imbalance between population growth and food production, as well as climate change. To overcome these challenges, breeding must utilize all necessary technologies to develop crops with higher productivity, resistance, stability, and climate-smart traits. The breeding process is generally evaluated regarding selection gain, which depends on several parameters in the breeders equation that have significantly changed in recent years. These changes have been enabled by advances in different omics such as phenomics, enviromics, and genomics. In this way, we applied some of the most recent breeding tools to contribute to agriculture in two case studies. In the second chapter, we simultaneously used association mapping and graphical networks to identify genomic regions responsible for resistance to one of the most significant fungi affecting raspberries. We used parents from more than one species, differing in economic importance and resistance, and employed both classical phenotyping techniques and highthroughput phenotyping to characterize this interspecific population. In the final chapter, we demonstrated an efficient way to optimize Multi-Environment Trials using enviromics. Additionally, we evaluated the environmental covariates that most influence rice yield in the US Rice Belt and characterized these Target Population of Environments (TPEs). Despite the US rice production representing 5% of the worlds rice production and having tripled its imports since 2001, there is still a need for work characterizing its TPEs. Thus, this work presents itself as a valuable resource for modern breeding, contributing to the production of more resistant, productive, and climate-smart varieties to address the current breeding challenges.A agricultura atualmente enfrenta vários desafios associados ao desequilíbrio entre o crescimento populacional e a produção de alimentos, além das mudanças climáticas. Para superar esses desafios, o melhoramento deve utilizar todas as tecnologias necessárias para desenvolver variedades com maior produtividade, resistência, estabilidade e caracteres otimizados ambientalmente. O processo de melhoramento é geralmente avaliado em relação ao ganho de seleção, que depende de vários parâmetros na equação do melhorista, os quais mudaram significativamente nos últimos anos. Essas mudanças foram possibilitadas pelo avanço de diferentes ômicas, como fenômica, envirômica e genômica. Dessa forma, aplicamos algumas das ferramentas mais recentes do melhoramento com o objetivo de contribuir com a agricultura em dois estudos de caso. No segundo capítulo, utilizamos simultaneamente mapeamento associativo e redes gráficas para identificar regiões genômicas responsáveis pela resistência a um dos fungos que mais afetam as framboesas. Usamos parentais de mais de uma espécie, diferenciando-se em importância econômica e resistência, e empregamos tanto técnicas clássicas de fenotipagem quanto fenotipagem de alto-rendimento para caracterizar essa população interespecífica. No último capítulo, demonstramos uma maneira eficiente de otimizar ensaios multi-ambientes utilizando envirômica. Além disso, avaliamos as covariáveis ambientais que mais influenciam a produtividade do arroz no cinturão de arroz dos EUA e caracterizamos suas Populações Alvo de Ambientes (TPEs). Apesar da produção de arroz dos EUA representar 5% da produção mundial de arroz e ter triplicado suas importações desde 2001, ainda é necessário realizar trabalhos que caracterizem suas TPEs. Assim, este trabalho se apresenta como um recurso valioso para o melhoramento genético moderno, além de contribuir para a produção de variedades mais resistentes, produtivas e adaptadas a diferentes ambientes alvo, enfrentando os desafios atuais do melhoramento.Biblioteca Digitais de Teses e Dissertações da USPFritsche Neto, RobertoPrado, Melina2024-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-08102024-155059/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T18:24:02Zoai:teses.usp.br:tde-08102024-155059Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T18:24:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry Otimizando programas de melhoramento com o uso de ferramentas modernas: estudos de caso em arroz e framboesa |
| title |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry |
| spellingShingle |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry Prado, Melina Agricultura Agriculture Breeding Disease resistance Ensaios multi-ambiente Envirotipagem Envirotyping Equações de modelos mistos Fenotipagem Genotipagem Genotyping Graphical network GWAS GWAS Melhoramento Mixed model equations Multi-environment trials Phenotyping Redes gráficas Resistência a doenças |
| title_short |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry |
| title_full |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry |
| title_fullStr |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry |
| title_full_unstemmed |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry |
| title_sort |
Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry |
| author |
Prado, Melina |
| author_facet |
Prado, Melina |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Fritsche Neto, Roberto |
| dc.contributor.author.fl_str_mv |
Prado, Melina |
| dc.subject.por.fl_str_mv |
Agricultura Agriculture Breeding Disease resistance Ensaios multi-ambiente Envirotipagem Envirotyping Equações de modelos mistos Fenotipagem Genotipagem Genotyping Graphical network GWAS GWAS Melhoramento Mixed model equations Multi-environment trials Phenotyping Redes gráficas Resistência a doenças |
| topic |
Agricultura Agriculture Breeding Disease resistance Ensaios multi-ambiente Envirotipagem Envirotyping Equações de modelos mistos Fenotipagem Genotipagem Genotyping Graphical network GWAS GWAS Melhoramento Mixed model equations Multi-environment trials Phenotyping Redes gráficas Resistência a doenças |
| description |
Agriculture currently faces several challenges associated with the imbalance between population growth and food production, as well as climate change. To overcome these challenges, breeding must utilize all necessary technologies to develop crops with higher productivity, resistance, stability, and climate-smart traits. The breeding process is generally evaluated regarding selection gain, which depends on several parameters in the breeders equation that have significantly changed in recent years. These changes have been enabled by advances in different omics such as phenomics, enviromics, and genomics. In this way, we applied some of the most recent breeding tools to contribute to agriculture in two case studies. In the second chapter, we simultaneously used association mapping and graphical networks to identify genomic regions responsible for resistance to one of the most significant fungi affecting raspberries. We used parents from more than one species, differing in economic importance and resistance, and employed both classical phenotyping techniques and highthroughput phenotyping to characterize this interspecific population. In the final chapter, we demonstrated an efficient way to optimize Multi-Environment Trials using enviromics. Additionally, we evaluated the environmental covariates that most influence rice yield in the US Rice Belt and characterized these Target Population of Environments (TPEs). Despite the US rice production representing 5% of the worlds rice production and having tripled its imports since 2001, there is still a need for work characterizing its TPEs. Thus, this work presents itself as a valuable resource for modern breeding, contributing to the production of more resistant, productive, and climate-smart varieties to address the current breeding challenges. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-08102024-155059/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-08102024-155059/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279181290569728 |