Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Prado, Melina
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11137/tde-08102024-155059/
Resumo: Agriculture currently faces several challenges associated with the imbalance between population growth and food production, as well as climate change. To overcome these challenges, breeding must utilize all necessary technologies to develop crops with higher productivity, resistance, stability, and climate-smart traits. The breeding process is generally evaluated regarding selection gain, which depends on several parameters in the breeders equation that have significantly changed in recent years. These changes have been enabled by advances in different omics such as phenomics, enviromics, and genomics. In this way, we applied some of the most recent breeding tools to contribute to agriculture in two case studies. In the second chapter, we simultaneously used association mapping and graphical networks to identify genomic regions responsible for resistance to one of the most significant fungi affecting raspberries. We used parents from more than one species, differing in economic importance and resistance, and employed both classical phenotyping techniques and highthroughput phenotyping to characterize this interspecific population. In the final chapter, we demonstrated an efficient way to optimize Multi-Environment Trials using enviromics. Additionally, we evaluated the environmental covariates that most influence rice yield in the US Rice Belt and characterized these Target Population of Environments (TPEs). Despite the US rice production representing 5% of the worlds rice production and having tripled its imports since 2001, there is still a need for work characterizing its TPEs. Thus, this work presents itself as a valuable resource for modern breeding, contributing to the production of more resistant, productive, and climate-smart varieties to address the current breeding challenges.
id USP_468f736c8d9d86fc7f2e08ad382a4d54
oai_identifier_str oai:teses.usp.br:tde-08102024-155059
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Optimizing breeding programs by deploying modern tools: case studies in rice and raspberryOtimizando programas de melhoramento com o uso de ferramentas modernas: estudos de caso em arroz e framboesaAgriculturaAgricultureBreedingDisease resistanceEnsaios multi-ambienteEnvirotipagemEnvirotypingEquações de modelos mistosFenotipagemGenotipagemGenotypingGraphical networkGWASGWASMelhoramentoMixed model equationsMulti-environment trialsPhenotypingRedes gráficasResistência a doençasAgriculture currently faces several challenges associated with the imbalance between population growth and food production, as well as climate change. To overcome these challenges, breeding must utilize all necessary technologies to develop crops with higher productivity, resistance, stability, and climate-smart traits. The breeding process is generally evaluated regarding selection gain, which depends on several parameters in the breeders equation that have significantly changed in recent years. These changes have been enabled by advances in different omics such as phenomics, enviromics, and genomics. In this way, we applied some of the most recent breeding tools to contribute to agriculture in two case studies. In the second chapter, we simultaneously used association mapping and graphical networks to identify genomic regions responsible for resistance to one of the most significant fungi affecting raspberries. We used parents from more than one species, differing in economic importance and resistance, and employed both classical phenotyping techniques and highthroughput phenotyping to characterize this interspecific population. In the final chapter, we demonstrated an efficient way to optimize Multi-Environment Trials using enviromics. Additionally, we evaluated the environmental covariates that most influence rice yield in the US Rice Belt and characterized these Target Population of Environments (TPEs). Despite the US rice production representing 5% of the worlds rice production and having tripled its imports since 2001, there is still a need for work characterizing its TPEs. Thus, this work presents itself as a valuable resource for modern breeding, contributing to the production of more resistant, productive, and climate-smart varieties to address the current breeding challenges.A agricultura atualmente enfrenta vários desafios associados ao desequilíbrio entre o crescimento populacional e a produção de alimentos, além das mudanças climáticas. Para superar esses desafios, o melhoramento deve utilizar todas as tecnologias necessárias para desenvolver variedades com maior produtividade, resistência, estabilidade e caracteres otimizados ambientalmente. O processo de melhoramento é geralmente avaliado em relação ao ganho de seleção, que depende de vários parâmetros na equação do melhorista, os quais mudaram significativamente nos últimos anos. Essas mudanças foram possibilitadas pelo avanço de diferentes ômicas, como fenômica, envirômica e genômica. Dessa forma, aplicamos algumas das ferramentas mais recentes do melhoramento com o objetivo de contribuir com a agricultura em dois estudos de caso. No segundo capítulo, utilizamos simultaneamente mapeamento associativo e redes gráficas para identificar regiões genômicas responsáveis pela resistência a um dos fungos que mais afetam as framboesas. Usamos parentais de mais de uma espécie, diferenciando-se em importância econômica e resistência, e empregamos tanto técnicas clássicas de fenotipagem quanto fenotipagem de alto-rendimento para caracterizar essa população interespecífica. No último capítulo, demonstramos uma maneira eficiente de otimizar ensaios multi-ambientes utilizando envirômica. Além disso, avaliamos as covariáveis ambientais que mais influenciam a produtividade do arroz no cinturão de arroz dos EUA e caracterizamos suas Populações Alvo de Ambientes (TPEs). Apesar da produção de arroz dos EUA representar 5% da produção mundial de arroz e ter triplicado suas importações desde 2001, ainda é necessário realizar trabalhos que caracterizem suas TPEs. Assim, este trabalho se apresenta como um recurso valioso para o melhoramento genético moderno, além de contribuir para a produção de variedades mais resistentes, produtivas e adaptadas a diferentes ambientes alvo, enfrentando os desafios atuais do melhoramento.Biblioteca Digitais de Teses e Dissertações da USPFritsche Neto, RobertoPrado, Melina2024-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-08102024-155059/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T18:24:02Zoai:teses.usp.br:tde-08102024-155059Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T18:24:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
Otimizando programas de melhoramento com o uso de ferramentas modernas: estudos de caso em arroz e framboesa
title Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
spellingShingle Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
Prado, Melina
Agricultura
Agriculture
Breeding
Disease resistance
Ensaios multi-ambiente
Envirotipagem
Envirotyping
Equações de modelos mistos
Fenotipagem
Genotipagem
Genotyping
Graphical network
GWAS
GWAS
Melhoramento
Mixed model equations
Multi-environment trials
Phenotyping
Redes gráficas
Resistência a doenças
title_short Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
title_full Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
title_fullStr Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
title_full_unstemmed Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
title_sort Optimizing breeding programs by deploying modern tools: case studies in rice and raspberry
author Prado, Melina
author_facet Prado, Melina
author_role author
dc.contributor.none.fl_str_mv Fritsche Neto, Roberto
dc.contributor.author.fl_str_mv Prado, Melina
dc.subject.por.fl_str_mv Agricultura
Agriculture
Breeding
Disease resistance
Ensaios multi-ambiente
Envirotipagem
Envirotyping
Equações de modelos mistos
Fenotipagem
Genotipagem
Genotyping
Graphical network
GWAS
GWAS
Melhoramento
Mixed model equations
Multi-environment trials
Phenotyping
Redes gráficas
Resistência a doenças
topic Agricultura
Agriculture
Breeding
Disease resistance
Ensaios multi-ambiente
Envirotipagem
Envirotyping
Equações de modelos mistos
Fenotipagem
Genotipagem
Genotyping
Graphical network
GWAS
GWAS
Melhoramento
Mixed model equations
Multi-environment trials
Phenotyping
Redes gráficas
Resistência a doenças
description Agriculture currently faces several challenges associated with the imbalance between population growth and food production, as well as climate change. To overcome these challenges, breeding must utilize all necessary technologies to develop crops with higher productivity, resistance, stability, and climate-smart traits. The breeding process is generally evaluated regarding selection gain, which depends on several parameters in the breeders equation that have significantly changed in recent years. These changes have been enabled by advances in different omics such as phenomics, enviromics, and genomics. In this way, we applied some of the most recent breeding tools to contribute to agriculture in two case studies. In the second chapter, we simultaneously used association mapping and graphical networks to identify genomic regions responsible for resistance to one of the most significant fungi affecting raspberries. We used parents from more than one species, differing in economic importance and resistance, and employed both classical phenotyping techniques and highthroughput phenotyping to characterize this interspecific population. In the final chapter, we demonstrated an efficient way to optimize Multi-Environment Trials using enviromics. Additionally, we evaluated the environmental covariates that most influence rice yield in the US Rice Belt and characterized these Target Population of Environments (TPEs). Despite the US rice production representing 5% of the worlds rice production and having tripled its imports since 2001, there is still a need for work characterizing its TPEs. Thus, this work presents itself as a valuable resource for modern breeding, contributing to the production of more resistant, productive, and climate-smart varieties to address the current breeding challenges.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11137/tde-08102024-155059/
url https://www.teses.usp.br/teses/disponiveis/11/11137/tde-08102024-155059/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279181290569728