A trajectory deformation algorithm for intelligent vehicles
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06092023-164648/ |
Resumo: | Autonomous vehicles require robust planning algorithms to compute the sequence of movements from a starting point to an ending goal while considering the constraints in the environment. It is challenging to ensure safety maneuvers in all possible traffic scenarios and the motion planning module recalculates initially-planned trajectories as many times as necessary to resolve those complex situations. However, the computational cost rises up when the planning process is repeated many times for the same task and current solutions do not allow to link user preferences to the vehicles motion behavior. An alternative is to generate new trajectories based on planned trajectories already available. We propose an algorithm that takes into account Signal Temporal Logic (STL) formulas that represent the constraints imposed by the user in order to modify invalid trajectories and guide the motion planning into respecting safety requirements such as the minimum distance to static obstacles or between vehicles. We use a lattice-based planner to generate candidate paths and include a multi-resolution feature to generate as many lattices as it is necessary depending on the context. Then, the STL robustness value quantifies the level of respect that initial paths have for STL specifications and activates the repairing process that generates new lattices based on the initial selected path. The robustness measure also defines a new resolution to generate lattices and influences the cost function to ensure the selection of the path that has more respect for the STL formulas. The deformed version of the initial lattice is used to generate the trajectory for a specified planning horizon using a simulation approach. The computational cost of the proposed repairing strategy is less than recalculating the complete trajectory from scratch and it is specially convenient when there are not many rule violations near the goal region. We evaluate our approach using the automobile tools of the robot simulator Webots considering different traffic scenarios involving obstacle avoidance. The efficiency of our method is demonstrated by comparing trajectories using STL constraints with trajectories that do not consider STL rules. |
| id |
USP_7865d98ade002342055904fdf3f8f5be |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-06092023-164648 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
A trajectory deformation algorithm for intelligent vehiclesUm algoritmo de deformação de trajetória para veículos inteligentesAutonomous vehiclesMotion planningPlanejamento de movimentosReparação de trajeTrajectory repairingVeículos autônomosAutonomous vehicles require robust planning algorithms to compute the sequence of movements from a starting point to an ending goal while considering the constraints in the environment. It is challenging to ensure safety maneuvers in all possible traffic scenarios and the motion planning module recalculates initially-planned trajectories as many times as necessary to resolve those complex situations. However, the computational cost rises up when the planning process is repeated many times for the same task and current solutions do not allow to link user preferences to the vehicles motion behavior. An alternative is to generate new trajectories based on planned trajectories already available. We propose an algorithm that takes into account Signal Temporal Logic (STL) formulas that represent the constraints imposed by the user in order to modify invalid trajectories and guide the motion planning into respecting safety requirements such as the minimum distance to static obstacles or between vehicles. We use a lattice-based planner to generate candidate paths and include a multi-resolution feature to generate as many lattices as it is necessary depending on the context. Then, the STL robustness value quantifies the level of respect that initial paths have for STL specifications and activates the repairing process that generates new lattices based on the initial selected path. The robustness measure also defines a new resolution to generate lattices and influences the cost function to ensure the selection of the path that has more respect for the STL formulas. The deformed version of the initial lattice is used to generate the trajectory for a specified planning horizon using a simulation approach. The computational cost of the proposed repairing strategy is less than recalculating the complete trajectory from scratch and it is specially convenient when there are not many rule violations near the goal region. We evaluate our approach using the automobile tools of the robot simulator Webots considering different traffic scenarios involving obstacle avoidance. The efficiency of our method is demonstrated by comparing trajectories using STL constraints with trajectories that do not consider STL rules.Veículos autônomos exigem algoritmos de planejamento robustos para calcular a sequência de movimentos de um ponto de partida a um objetivo final, considerando as restrições do ambiente. É desafiador garantir manobras seguras em todos os cenários de tráfego possíveis e o módulo de planejamento de movimento recalcula as trajetórias inicialmente planejadas quantas vezes forem necessárias para resolver essas situações complexas. No entanto, o custo computacional aumenta quando o processo de planejamento é repetido muitas vezes para a mesma tarefa e as soluções atuais não permitem vincular as preferências do usuário ao comportamento de movimento do veículo. Uma alternativa é gerar novas trajetórias com base em trajetórias planejadas já disponíveis. Propomos um algoritmo que leva em conta fórmulas de Lógica Temporal de Sinal (STL) que representam as restrições impostas pelo usuário para modificar trajetórias inválidas e orientar o planejamento do movimento a respeitar requisitos de segurança como distância mínima a obstáculos estáticos ou entre veículos. Usamos um planejador baseado em reticulados para gerar caminhos candidatos e incluímos um recurso de multi-resolução para gerar quantos reticulados forem necessários dependendo do contexto. Então, o valor de robustez STL quantifica o nível de respeito que os caminhos iniciais têm pelas especificações STL e ativa o processo de reparo que gera novos reticulados com base no caminho inicial selecionado. A medida de robustez também define uma nova resolução para gerar reticulados e influencia a função custo para garantir a seleção do caminho que mais respeita as fórmulas STL. A versão deformada do reticulado inicial é usada para gerar a trajetória para um horizonte de planejamento especificado usando uma abordagem de simulação. O custo computacional da estratégia de reparo proposta é menor do que recalcular a trajetória completa do zero e é especialmente conveniente quando não há muitas violações de regras próximas à região do objetivo. Avaliamos nossa abordagem usando as ferramentas automotivas do simulador de robôs Webots considerando diferentes cenários de tráfego envolvendo desvio de obstáculos. A eficiência do nosso método é demonstrada comparando trajetórias usando restrições STL com trajetórias que não consideram regras STL.Biblioteca Digitais de Teses e Dissertações da USPOsório, Fernando SantosJusto, Victor Hugo Sillerico2023-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-06092023-164648/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-06T20:00:02Zoai:teses.usp.br:tde-06092023-164648Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-06T20:00:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
A trajectory deformation algorithm for intelligent vehicles Um algoritmo de deformação de trajetória para veículos inteligentes |
| title |
A trajectory deformation algorithm for intelligent vehicles |
| spellingShingle |
A trajectory deformation algorithm for intelligent vehicles Justo, Victor Hugo Sillerico Autonomous vehicles Motion planning Planejamento de movimentos Reparação de traje Trajectory repairing Veículos autônomos |
| title_short |
A trajectory deformation algorithm for intelligent vehicles |
| title_full |
A trajectory deformation algorithm for intelligent vehicles |
| title_fullStr |
A trajectory deformation algorithm for intelligent vehicles |
| title_full_unstemmed |
A trajectory deformation algorithm for intelligent vehicles |
| title_sort |
A trajectory deformation algorithm for intelligent vehicles |
| author |
Justo, Victor Hugo Sillerico |
| author_facet |
Justo, Victor Hugo Sillerico |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Osório, Fernando Santos |
| dc.contributor.author.fl_str_mv |
Justo, Victor Hugo Sillerico |
| dc.subject.por.fl_str_mv |
Autonomous vehicles Motion planning Planejamento de movimentos Reparação de traje Trajectory repairing Veículos autônomos |
| topic |
Autonomous vehicles Motion planning Planejamento de movimentos Reparação de traje Trajectory repairing Veículos autônomos |
| description |
Autonomous vehicles require robust planning algorithms to compute the sequence of movements from a starting point to an ending goal while considering the constraints in the environment. It is challenging to ensure safety maneuvers in all possible traffic scenarios and the motion planning module recalculates initially-planned trajectories as many times as necessary to resolve those complex situations. However, the computational cost rises up when the planning process is repeated many times for the same task and current solutions do not allow to link user preferences to the vehicles motion behavior. An alternative is to generate new trajectories based on planned trajectories already available. We propose an algorithm that takes into account Signal Temporal Logic (STL) formulas that represent the constraints imposed by the user in order to modify invalid trajectories and guide the motion planning into respecting safety requirements such as the minimum distance to static obstacles or between vehicles. We use a lattice-based planner to generate candidate paths and include a multi-resolution feature to generate as many lattices as it is necessary depending on the context. Then, the STL robustness value quantifies the level of respect that initial paths have for STL specifications and activates the repairing process that generates new lattices based on the initial selected path. The robustness measure also defines a new resolution to generate lattices and influences the cost function to ensure the selection of the path that has more respect for the STL formulas. The deformed version of the initial lattice is used to generate the trajectory for a specified planning horizon using a simulation approach. The computational cost of the proposed repairing strategy is less than recalculating the complete trajectory from scratch and it is specially convenient when there are not many rule violations near the goal region. We evaluate our approach using the automobile tools of the robot simulator Webots considering different traffic scenarios involving obstacle avoidance. The efficiency of our method is demonstrated by comparing trajectories using STL constraints with trajectories that do not consider STL rules. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-04-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06092023-164648/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06092023-164648/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257908326170624 |