An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Giuntini, Felipe Taliar
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-093843/
Resumo: The constant growth in the use and sharing of data on social networks has provided opportunities to develop intelligent solutions for understanding different dimensions of human behavior online since users share social aspects, feelings, and opinions daily. In this way, several studies in Affective Computing have been conducted to recognize and predict emotional and indicative aspects of mental problems through the mining of complex data, such as texts, images, videos, and emoticons, available in social network posts. Depression is a common and growing health problem globally and is considered the third largest cause of incapacity for work, and the leading cause of emergency in health centers is characterized by the manifestation of a set of symptoms for at least two weeks. Symptoms can be compounded by profound sadness, guilt, loss of pleasure and mixed and atypical characteristics, which may be correlated to contexts and severely impact various social aspects. Although it is necessary to observe emotional characteristics over time, as it is known in the literature, studies have focused on classifying whether a given post is depressive and have not addressed the temporal recognition of mood manifestations and aspects of personality context. This Thesis aimed to answer \"how to recognize temporal patterns of behavior of depressive users in online social networks?\" In this way, an approach for the temporal recognition of behavioral patterns of depressed users on social networks is presented, composed of two methodologies that allow (i) the temporal evaluation of the behavioral patterns of user interactions in groups combining modeling and metrics of complex networks and recognition of emotions and feelings, and (i) sequential recognition of the patterns of behavior of individual depressive users, through the mining of frequent patterns of emotional and contextual characteristics. Information from posts and comments was used in both methodologies, composed of texts and emoticons present in the users timeline. Through complex network measures and frequent pattern recognition, the approach was evaluated, indicating to recognize strong patterns of interactional, emotional, and contextual behaviors online over time, which serve as indicative for human behavior specialists and are based on evidence in the literature.
id USP_842da168569dc31c218cf10b59c451fb
oai_identifier_str oai:teses.usp.br:tde-18082021-093843
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individuallyUma abordagem para a avaliação sequencial dos comportamentos emocionais de usuários depressivos nas redes sociais em grupo e individualmenteAffective computingAnálise temporalComputação afetivaDepressãoDepressionMineração de padrões sequenciaisRedes sociaisSequencial pattern miningSocial networksTemporal analysisThe constant growth in the use and sharing of data on social networks has provided opportunities to develop intelligent solutions for understanding different dimensions of human behavior online since users share social aspects, feelings, and opinions daily. In this way, several studies in Affective Computing have been conducted to recognize and predict emotional and indicative aspects of mental problems through the mining of complex data, such as texts, images, videos, and emoticons, available in social network posts. Depression is a common and growing health problem globally and is considered the third largest cause of incapacity for work, and the leading cause of emergency in health centers is characterized by the manifestation of a set of symptoms for at least two weeks. Symptoms can be compounded by profound sadness, guilt, loss of pleasure and mixed and atypical characteristics, which may be correlated to contexts and severely impact various social aspects. Although it is necessary to observe emotional characteristics over time, as it is known in the literature, studies have focused on classifying whether a given post is depressive and have not addressed the temporal recognition of mood manifestations and aspects of personality context. This Thesis aimed to answer \"how to recognize temporal patterns of behavior of depressive users in online social networks?\" In this way, an approach for the temporal recognition of behavioral patterns of depressed users on social networks is presented, composed of two methodologies that allow (i) the temporal evaluation of the behavioral patterns of user interactions in groups combining modeling and metrics of complex networks and recognition of emotions and feelings, and (i) sequential recognition of the patterns of behavior of individual depressive users, through the mining of frequent patterns of emotional and contextual characteristics. Information from posts and comments was used in both methodologies, composed of texts and emoticons present in the users timeline. Through complex network measures and frequent pattern recognition, the approach was evaluated, indicating to recognize strong patterns of interactional, emotional, and contextual behaviors online over time, which serve as indicative for human behavior specialists and are based on evidence in the literature.O constante crescimento de uso e compartilhamento de dados em redes sociais tem fornecido oportunidades de desenvolvimento de soluções inteligentes para a compreensão de dimensões do comportamento humano online, uma vez que usuários compartilham aspectos sociais, sentimentos e opiniões diariamente. Deste modo, diversos estudos em Computação Afetiva têm sido conduzidos em busca de reconhecer e predizer aspectos emocionais e indicativos de problemas mentais, por meio de mineração de dados complexos, como textos, imagens, vídeos e emoticons, disponibilizados nas postagens de redes sociais. A depressão é um problema comum e crescente de saúde no mundo, sendo considerada a terceira maior causa de incapacidade para o trabalho e a principal causa de emergência nos centros de saúde, caracterizada pela manifestação de um conjunto de sintomas por pelo menos duas semanas. Os sintomas podem ser compostos por profunda tristeza, sentimento de culpa, perda de prazer e características mistas e atípicas, correlacionar à contextos e impactar severamente diversos aspectos sociais. Embora seja necessário a observação de características emocionais ao longo do tempo, pelo que é conhecido na literatura, os estudos tem focado em classificar se uma determinada postagem é depressiva e não têm endereçado o reconhecimento temporal das manifestações de humor, bem como aspectos de personalidade ou contexto. Com isso, esta Tese teve por objetivo responder como reconhecer padrões temporais de comportamento de usuários depressivos em redes sociais online? Desta forma, apresenta-se uma abordagem para reconhecimento temporal de padrões de comportamento de usuários depressivos em redes sociais, composta por duas metodologias que permitem (i) a avaliação temporal dos padrões de comportamentos de interações dos usuários em grupo combinando modelagem e métricas de redes complexas e reconhecimento de emoções e sentimentos, e (i) reconhecimento sequencial dos padrões de comportamento dos usuários depressivos individualmente, por meio da minerações de padrões frequentes das características emocionais e de contexto. Em ambas, utilizou-se informações de postagens e comentários, compostos por textos e emoticons presentes na timeline do usuário. A abordagem foi avaliada por meio de métricas de rede complexas e reconhecimento de padrões frequentes, indicando reconhecer fortes padrões de comportamentos interacional, emocional e de contexto online ao longo do tempo, que servem como indicativos para especialistas do comportamento humano e são pautados em evidências na literatura.Biblioteca Digitais de Teses e Dissertações da USPUeyama, JoGiuntini, Felipe Taliar2021-06-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-093843/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2021-08-18T12:43:02Zoai:teses.usp.br:tde-18082021-093843Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-08-18T12:43:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually
Uma abordagem para a avaliação sequencial dos comportamentos emocionais de usuários depressivos nas redes sociais em grupo e individualmente
title An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually
spellingShingle An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually
Giuntini, Felipe Taliar
Affective computing
Análise temporal
Computação afetiva
Depressão
Depression
Mineração de padrões sequenciais
Redes sociais
Sequencial pattern mining
Social networks
Temporal analysis
title_short An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually
title_full An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually
title_fullStr An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually
title_full_unstemmed An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually
title_sort An approach to the sequential evaluation of emotional behaviors of depressive users on social networks in groups and individually
author Giuntini, Felipe Taliar
author_facet Giuntini, Felipe Taliar
author_role author
dc.contributor.none.fl_str_mv Ueyama, Jo
dc.contributor.author.fl_str_mv Giuntini, Felipe Taliar
dc.subject.por.fl_str_mv Affective computing
Análise temporal
Computação afetiva
Depressão
Depression
Mineração de padrões sequenciais
Redes sociais
Sequencial pattern mining
Social networks
Temporal analysis
topic Affective computing
Análise temporal
Computação afetiva
Depressão
Depression
Mineração de padrões sequenciais
Redes sociais
Sequencial pattern mining
Social networks
Temporal analysis
description The constant growth in the use and sharing of data on social networks has provided opportunities to develop intelligent solutions for understanding different dimensions of human behavior online since users share social aspects, feelings, and opinions daily. In this way, several studies in Affective Computing have been conducted to recognize and predict emotional and indicative aspects of mental problems through the mining of complex data, such as texts, images, videos, and emoticons, available in social network posts. Depression is a common and growing health problem globally and is considered the third largest cause of incapacity for work, and the leading cause of emergency in health centers is characterized by the manifestation of a set of symptoms for at least two weeks. Symptoms can be compounded by profound sadness, guilt, loss of pleasure and mixed and atypical characteristics, which may be correlated to contexts and severely impact various social aspects. Although it is necessary to observe emotional characteristics over time, as it is known in the literature, studies have focused on classifying whether a given post is depressive and have not addressed the temporal recognition of mood manifestations and aspects of personality context. This Thesis aimed to answer \"how to recognize temporal patterns of behavior of depressive users in online social networks?\" In this way, an approach for the temporal recognition of behavioral patterns of depressed users on social networks is presented, composed of two methodologies that allow (i) the temporal evaluation of the behavioral patterns of user interactions in groups combining modeling and metrics of complex networks and recognition of emotions and feelings, and (i) sequential recognition of the patterns of behavior of individual depressive users, through the mining of frequent patterns of emotional and contextual characteristics. Information from posts and comments was used in both methodologies, composed of texts and emoticons present in the users timeline. Through complex network measures and frequent pattern recognition, the approach was evaluated, indicating to recognize strong patterns of interactional, emotional, and contextual behaviors online over time, which serve as indicative for human behavior specialists and are based on evidence in the literature.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-093843/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-18082021-093843/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258248342667264