An interpretable graph neural network for histological image analysis

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Martins, Luan Vinicius de Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082025-101431/
Resumo: The rapid advancements in machine learning have opened up new possibilities for solving complex problems, including in highly specialized applications with notable impact on relevant diseases, such as cancer. A critical aspect of cancer treatment is histopathological image analysis, a field that analyzes large zoomable images at a microscope level, to understand how the disease affected the patient, enabling patient-tailored treatment strategies. However, progress in this area relies heavily on interdisciplinary collaboration and the development of methods that utilize highquality annotated datasets effectively. In this thesis, we address these challenges by proposing a new collaborative annotation software for Whole Slides Images. Using the software, we aid in the construction of novel annotated datasets with application-specific goals. Then, inspired by the pathologist\'s work methodology, we develop a novel Graph Neural Network (GNN) technique based on activation maps that models neighborhood representation based on the presence or absence of features in the neighborhood. Our approach is based on the Message Passing architecture, which although very popular, may limit graph representation by suffering from issues such as limited injectability and oversquashing, depending on the GNN architecture and task. Moreover, increasing traditional GNN\'s receptive field requires deepening the neural network, which introduces additional challenges, such as higher computational requirements. In contrast, our approach projects the graph\'s features to a fixed-size map representation with Self-Organizing Maps, which are activated based on the presence and distance of features from the central node, within the model\'s configurable receptive field. Lastly, the activation map keeps the graph\'s features within their original domain during aggregation, which has benefits for interpretability. We conclude this work by training the proposed GNN on a novel annotated dataset developed with the proposed tool, and using its interpretability advantages to highlight the patterns it identifies, contrasting it with a pathologist\'s expectations. This work contributes to the advancement of histopathological image analysis by proposing novel research tools, annotated data, and methods, paving the way for more accurate and reliable AI-based personalized medicine.
id USP_acd04770f8b7a3ae76bd325635f0274e
oai_identifier_str oai:teses.usp.br:tde-11082025-101431
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling An interpretable graph neural network for histological image analysisUm método interpretável de redes neurais para grafos aplicado à análise de imagens histológicasGraph Neural NetworkHistopathologyHistopatologiaRede Neural em GrafosWhole Slide ImageWhole Slide ImageThe rapid advancements in machine learning have opened up new possibilities for solving complex problems, including in highly specialized applications with notable impact on relevant diseases, such as cancer. A critical aspect of cancer treatment is histopathological image analysis, a field that analyzes large zoomable images at a microscope level, to understand how the disease affected the patient, enabling patient-tailored treatment strategies. However, progress in this area relies heavily on interdisciplinary collaboration and the development of methods that utilize highquality annotated datasets effectively. In this thesis, we address these challenges by proposing a new collaborative annotation software for Whole Slides Images. Using the software, we aid in the construction of novel annotated datasets with application-specific goals. Then, inspired by the pathologist\'s work methodology, we develop a novel Graph Neural Network (GNN) technique based on activation maps that models neighborhood representation based on the presence or absence of features in the neighborhood. Our approach is based on the Message Passing architecture, which although very popular, may limit graph representation by suffering from issues such as limited injectability and oversquashing, depending on the GNN architecture and task. Moreover, increasing traditional GNN\'s receptive field requires deepening the neural network, which introduces additional challenges, such as higher computational requirements. In contrast, our approach projects the graph\'s features to a fixed-size map representation with Self-Organizing Maps, which are activated based on the presence and distance of features from the central node, within the model\'s configurable receptive field. Lastly, the activation map keeps the graph\'s features within their original domain during aggregation, which has benefits for interpretability. We conclude this work by training the proposed GNN on a novel annotated dataset developed with the proposed tool, and using its interpretability advantages to highlight the patterns it identifies, contrasting it with a pathologist\'s expectations. This work contributes to the advancement of histopathological image analysis by proposing novel research tools, annotated data, and methods, paving the way for more accurate and reliable AI-based personalized medicine.Os rápidos avanços no aprendizado de máquina abriram novas possibilidades para resolver problemas complexos, incluindo em aplicações altamente especializadas com grande impacto em doenças relevantes, como o câncer. Um aspecto crítico do tratamento do câncer é a análise de imagens histopatológicas, uma área que consiste em analisar imagens de alta resolução e zoom em nível de microscópio, permitindo entendender como a doença afetou o paciente, e desenvolver estratégias personalizadas de tratamento. No entanto, o progresso nessa área depende da colaboração interdisciplinar e do desenvolvimento de métodos que utilizam datasets anotados de alta qualidade de forma eficaz. Nesta tese, abordamos esses desafios propondo um novo software de anotação colaborativa para Whole Slides Images. Usando o software, auxiliamos na construção de novos datasets anotados focando em resolver aplicações específicas. Por fim, inspirados pela metodologia de trabalho de patologistas, desenvolvemos uma nova técnica de Graph Neural Network (GNN) baseada em mapas de ativação que modela a representação da vizinhança com base na presença ou ausência de atributos nela. Nossa abordagem é baseada na arquitetura Message Passing, que embora muito popular, pode limitar a representação de grafos por sofrer de desafios como injetabilidade limitada e oversquashing, dependendo da arquitetura e tarefa da GNN. Além disso, aumentar o campo receptivo de GNN tradicionais requer tornar a rede mais profunda, o que introduz novos desafios, tal como maior requisito de processamento. Em contraste, nossa abordagem consiste em projetar os atributos do grafo para uma representação de mapa com tamanho fixo, por meio da técnica de Mapas Auto-Organizáveis. As regiões do mapa são ativadas com base na presença e distância de atributos a partir do vertice central, considerando o campo receptivo configurável do modelo. Por fim, o mapa de ativação mantém os atributos dos vértices dentro de seu domínio original durante a agregação, o que traz benefícios para interpretabilidade. Concluímos este trabalho treinando a GNN proposta em um novo dataset anotado com a ferramenta desenvolvida e usando a explicabilidade do método para destacar os padrões que a técnica identificou, contrastando-os com as expectativas de um patologista. Este trabalho contribui para o avanço da análise de imagens histopatológicas ao propor ferramentas de pesquisa, novos dados e métodos, abrindo caminho para uma medicina personalizada baseada em IA mais precisa e confiável.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoSilva, Israel Tojal daMartins, Luan Vinicius de Carvalho2025-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082025-101431/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-08-11T14:07:02Zoai:teses.usp.br:tde-11082025-101431Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-08-11T14:07:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv An interpretable graph neural network for histological image analysis
Um método interpretável de redes neurais para grafos aplicado à análise de imagens histológicas
title An interpretable graph neural network for histological image analysis
spellingShingle An interpretable graph neural network for histological image analysis
Martins, Luan Vinicius de Carvalho
Graph Neural Network
Histopathology
Histopatologia
Rede Neural em Grafos
Whole Slide Image
Whole Slide Image
title_short An interpretable graph neural network for histological image analysis
title_full An interpretable graph neural network for histological image analysis
title_fullStr An interpretable graph neural network for histological image analysis
title_full_unstemmed An interpretable graph neural network for histological image analysis
title_sort An interpretable graph neural network for histological image analysis
author Martins, Luan Vinicius de Carvalho
author_facet Martins, Luan Vinicius de Carvalho
author_role author
dc.contributor.none.fl_str_mv Liang, Zhao
Silva, Israel Tojal da
dc.contributor.author.fl_str_mv Martins, Luan Vinicius de Carvalho
dc.subject.por.fl_str_mv Graph Neural Network
Histopathology
Histopatologia
Rede Neural em Grafos
Whole Slide Image
Whole Slide Image
topic Graph Neural Network
Histopathology
Histopatologia
Rede Neural em Grafos
Whole Slide Image
Whole Slide Image
description The rapid advancements in machine learning have opened up new possibilities for solving complex problems, including in highly specialized applications with notable impact on relevant diseases, such as cancer. A critical aspect of cancer treatment is histopathological image analysis, a field that analyzes large zoomable images at a microscope level, to understand how the disease affected the patient, enabling patient-tailored treatment strategies. However, progress in this area relies heavily on interdisciplinary collaboration and the development of methods that utilize highquality annotated datasets effectively. In this thesis, we address these challenges by proposing a new collaborative annotation software for Whole Slides Images. Using the software, we aid in the construction of novel annotated datasets with application-specific goals. Then, inspired by the pathologist\'s work methodology, we develop a novel Graph Neural Network (GNN) technique based on activation maps that models neighborhood representation based on the presence or absence of features in the neighborhood. Our approach is based on the Message Passing architecture, which although very popular, may limit graph representation by suffering from issues such as limited injectability and oversquashing, depending on the GNN architecture and task. Moreover, increasing traditional GNN\'s receptive field requires deepening the neural network, which introduces additional challenges, such as higher computational requirements. In contrast, our approach projects the graph\'s features to a fixed-size map representation with Self-Organizing Maps, which are activated based on the presence and distance of features from the central node, within the model\'s configurable receptive field. Lastly, the activation map keeps the graph\'s features within their original domain during aggregation, which has benefits for interpretability. We conclude this work by training the proposed GNN on a novel annotated dataset developed with the proposed tool, and using its interpretability advantages to highlight the patterns it identifies, contrasting it with a pathologist\'s expectations. This work contributes to the advancement of histopathological image analysis by proposing novel research tools, annotated data, and methods, paving the way for more accurate and reliable AI-based personalized medicine.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082025-101431/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082025-101431/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370482547523584