An interpretable graph neural network for histological image analysis
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082025-101431/ |
Resumo: | The rapid advancements in machine learning have opened up new possibilities for solving complex problems, including in highly specialized applications with notable impact on relevant diseases, such as cancer. A critical aspect of cancer treatment is histopathological image analysis, a field that analyzes large zoomable images at a microscope level, to understand how the disease affected the patient, enabling patient-tailored treatment strategies. However, progress in this area relies heavily on interdisciplinary collaboration and the development of methods that utilize highquality annotated datasets effectively. In this thesis, we address these challenges by proposing a new collaborative annotation software for Whole Slides Images. Using the software, we aid in the construction of novel annotated datasets with application-specific goals. Then, inspired by the pathologist\'s work methodology, we develop a novel Graph Neural Network (GNN) technique based on activation maps that models neighborhood representation based on the presence or absence of features in the neighborhood. Our approach is based on the Message Passing architecture, which although very popular, may limit graph representation by suffering from issues such as limited injectability and oversquashing, depending on the GNN architecture and task. Moreover, increasing traditional GNN\'s receptive field requires deepening the neural network, which introduces additional challenges, such as higher computational requirements. In contrast, our approach projects the graph\'s features to a fixed-size map representation with Self-Organizing Maps, which are activated based on the presence and distance of features from the central node, within the model\'s configurable receptive field. Lastly, the activation map keeps the graph\'s features within their original domain during aggregation, which has benefits for interpretability. We conclude this work by training the proposed GNN on a novel annotated dataset developed with the proposed tool, and using its interpretability advantages to highlight the patterns it identifies, contrasting it with a pathologist\'s expectations. This work contributes to the advancement of histopathological image analysis by proposing novel research tools, annotated data, and methods, paving the way for more accurate and reliable AI-based personalized medicine. |
| id |
USP_acd04770f8b7a3ae76bd325635f0274e |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-11082025-101431 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
An interpretable graph neural network for histological image analysisUm método interpretável de redes neurais para grafos aplicado à análise de imagens histológicasGraph Neural NetworkHistopathologyHistopatologiaRede Neural em GrafosWhole Slide ImageWhole Slide ImageThe rapid advancements in machine learning have opened up new possibilities for solving complex problems, including in highly specialized applications with notable impact on relevant diseases, such as cancer. A critical aspect of cancer treatment is histopathological image analysis, a field that analyzes large zoomable images at a microscope level, to understand how the disease affected the patient, enabling patient-tailored treatment strategies. However, progress in this area relies heavily on interdisciplinary collaboration and the development of methods that utilize highquality annotated datasets effectively. In this thesis, we address these challenges by proposing a new collaborative annotation software for Whole Slides Images. Using the software, we aid in the construction of novel annotated datasets with application-specific goals. Then, inspired by the pathologist\'s work methodology, we develop a novel Graph Neural Network (GNN) technique based on activation maps that models neighborhood representation based on the presence or absence of features in the neighborhood. Our approach is based on the Message Passing architecture, which although very popular, may limit graph representation by suffering from issues such as limited injectability and oversquashing, depending on the GNN architecture and task. Moreover, increasing traditional GNN\'s receptive field requires deepening the neural network, which introduces additional challenges, such as higher computational requirements. In contrast, our approach projects the graph\'s features to a fixed-size map representation with Self-Organizing Maps, which are activated based on the presence and distance of features from the central node, within the model\'s configurable receptive field. Lastly, the activation map keeps the graph\'s features within their original domain during aggregation, which has benefits for interpretability. We conclude this work by training the proposed GNN on a novel annotated dataset developed with the proposed tool, and using its interpretability advantages to highlight the patterns it identifies, contrasting it with a pathologist\'s expectations. This work contributes to the advancement of histopathological image analysis by proposing novel research tools, annotated data, and methods, paving the way for more accurate and reliable AI-based personalized medicine.Os rápidos avanços no aprendizado de máquina abriram novas possibilidades para resolver problemas complexos, incluindo em aplicações altamente especializadas com grande impacto em doenças relevantes, como o câncer. Um aspecto crítico do tratamento do câncer é a análise de imagens histopatológicas, uma área que consiste em analisar imagens de alta resolução e zoom em nível de microscópio, permitindo entendender como a doença afetou o paciente, e desenvolver estratégias personalizadas de tratamento. No entanto, o progresso nessa área depende da colaboração interdisciplinar e do desenvolvimento de métodos que utilizam datasets anotados de alta qualidade de forma eficaz. Nesta tese, abordamos esses desafios propondo um novo software de anotação colaborativa para Whole Slides Images. Usando o software, auxiliamos na construção de novos datasets anotados focando em resolver aplicações específicas. Por fim, inspirados pela metodologia de trabalho de patologistas, desenvolvemos uma nova técnica de Graph Neural Network (GNN) baseada em mapas de ativação que modela a representação da vizinhança com base na presença ou ausência de atributos nela. Nossa abordagem é baseada na arquitetura Message Passing, que embora muito popular, pode limitar a representação de grafos por sofrer de desafios como injetabilidade limitada e oversquashing, dependendo da arquitetura e tarefa da GNN. Além disso, aumentar o campo receptivo de GNN tradicionais requer tornar a rede mais profunda, o que introduz novos desafios, tal como maior requisito de processamento. Em contraste, nossa abordagem consiste em projetar os atributos do grafo para uma representação de mapa com tamanho fixo, por meio da técnica de Mapas Auto-Organizáveis. As regiões do mapa são ativadas com base na presença e distância de atributos a partir do vertice central, considerando o campo receptivo configurável do modelo. Por fim, o mapa de ativação mantém os atributos dos vértices dentro de seu domínio original durante a agregação, o que traz benefícios para interpretabilidade. Concluímos este trabalho treinando a GNN proposta em um novo dataset anotado com a ferramenta desenvolvida e usando a explicabilidade do método para destacar os padrões que a técnica identificou, contrastando-os com as expectativas de um patologista. Este trabalho contribui para o avanço da análise de imagens histopatológicas ao propor ferramentas de pesquisa, novos dados e métodos, abrindo caminho para uma medicina personalizada baseada em IA mais precisa e confiável.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoSilva, Israel Tojal daMartins, Luan Vinicius de Carvalho2025-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082025-101431/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-08-11T14:07:02Zoai:teses.usp.br:tde-11082025-101431Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-08-11T14:07:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
An interpretable graph neural network for histological image analysis Um método interpretável de redes neurais para grafos aplicado à análise de imagens histológicas |
| title |
An interpretable graph neural network for histological image analysis |
| spellingShingle |
An interpretable graph neural network for histological image analysis Martins, Luan Vinicius de Carvalho Graph Neural Network Histopathology Histopatologia Rede Neural em Grafos Whole Slide Image Whole Slide Image |
| title_short |
An interpretable graph neural network for histological image analysis |
| title_full |
An interpretable graph neural network for histological image analysis |
| title_fullStr |
An interpretable graph neural network for histological image analysis |
| title_full_unstemmed |
An interpretable graph neural network for histological image analysis |
| title_sort |
An interpretable graph neural network for histological image analysis |
| author |
Martins, Luan Vinicius de Carvalho |
| author_facet |
Martins, Luan Vinicius de Carvalho |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Liang, Zhao Silva, Israel Tojal da |
| dc.contributor.author.fl_str_mv |
Martins, Luan Vinicius de Carvalho |
| dc.subject.por.fl_str_mv |
Graph Neural Network Histopathology Histopatologia Rede Neural em Grafos Whole Slide Image Whole Slide Image |
| topic |
Graph Neural Network Histopathology Histopatologia Rede Neural em Grafos Whole Slide Image Whole Slide Image |
| description |
The rapid advancements in machine learning have opened up new possibilities for solving complex problems, including in highly specialized applications with notable impact on relevant diseases, such as cancer. A critical aspect of cancer treatment is histopathological image analysis, a field that analyzes large zoomable images at a microscope level, to understand how the disease affected the patient, enabling patient-tailored treatment strategies. However, progress in this area relies heavily on interdisciplinary collaboration and the development of methods that utilize highquality annotated datasets effectively. In this thesis, we address these challenges by proposing a new collaborative annotation software for Whole Slides Images. Using the software, we aid in the construction of novel annotated datasets with application-specific goals. Then, inspired by the pathologist\'s work methodology, we develop a novel Graph Neural Network (GNN) technique based on activation maps that models neighborhood representation based on the presence or absence of features in the neighborhood. Our approach is based on the Message Passing architecture, which although very popular, may limit graph representation by suffering from issues such as limited injectability and oversquashing, depending on the GNN architecture and task. Moreover, increasing traditional GNN\'s receptive field requires deepening the neural network, which introduces additional challenges, such as higher computational requirements. In contrast, our approach projects the graph\'s features to a fixed-size map representation with Self-Organizing Maps, which are activated based on the presence and distance of features from the central node, within the model\'s configurable receptive field. Lastly, the activation map keeps the graph\'s features within their original domain during aggregation, which has benefits for interpretability. We conclude this work by training the proposed GNN on a novel annotated dataset developed with the proposed tool, and using its interpretability advantages to highlight the patterns it identifies, contrasting it with a pathologist\'s expectations. This work contributes to the advancement of histopathological image analysis by proposing novel research tools, annotated data, and methods, paving the way for more accurate and reliable AI-based personalized medicine. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082025-101431/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-11082025-101431/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848370482547523584 |