Distribuição de autovalores de matrizes aleatórias.
| Ano de defesa: | 2000 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/43/43133/tde-11062002-103116/ |
Resumo: | Em uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá cos da função de correlação truncada. |
| id |
USP_cda212941a18c75dad43fc0c8b7b888c |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-11062002-103116 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Distribuição de autovalores de matrizes aleatórias.Eigenvalues distribution of random matrices.Classe de UniversalidadeCorrelation functionsEnsembles de matrizes aleatóriasFunções de CorrelaçãoLarge numbers Law of correlated random variablesLei do semi-círculolei dos grandes números para variáveis aleatóriasrandom matrices ensemblessemi-circle lawuniversality classEm uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá
cos da função de correlação truncada.In a detailed review we obtain a semi-circle law for the density of states in theWigners Gaussian Ensemble. Also we talk about Dysons Analogy, seeing the eigenvalues like charges that repulse themselves in the unitary circle, showing that this case the density of states is uniform. In a more general context we obtain the semi-circle law, proving the Glivenko-Cantelli Theorem to strongly correlated variables, using a combinatorial method of Paths' Counting. Thus we are showing the stability of the semi-circle Law. Also, in this dissertation we study the correlation functions in the Gaussian and Circular ensembles showing that using the Gram's Method in the case that eigenvalues are limited in a interval. In these ensembles we computed the density of states. More precisely, in a Chebychev ensemble the results were obtained analytically. In this ensemble, we also obtain graphics of the truncated correlation function.Biblioteca Digitais de Teses e Dissertações da USPMarchetti, Domingos Humberto UrbanoSilva, Roberto da2000-05-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/43/43133/tde-11062002-103116/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:08:16Zoai:teses.usp.br:tde-11062002-103116Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:08:16Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Distribuição de autovalores de matrizes aleatórias. Eigenvalues distribution of random matrices. |
| title |
Distribuição de autovalores de matrizes aleatórias. |
| spellingShingle |
Distribuição de autovalores de matrizes aleatórias. Silva, Roberto da Classe de Universalidade Correlation functions Ensembles de matrizes aleatórias Funções de Correlação Large numbers Law of correlated random variables Lei do semi-círculo lei dos grandes números para variáveis aleatórias random matrices ensembles semi-circle law universality class |
| title_short |
Distribuição de autovalores de matrizes aleatórias. |
| title_full |
Distribuição de autovalores de matrizes aleatórias. |
| title_fullStr |
Distribuição de autovalores de matrizes aleatórias. |
| title_full_unstemmed |
Distribuição de autovalores de matrizes aleatórias. |
| title_sort |
Distribuição de autovalores de matrizes aleatórias. |
| author |
Silva, Roberto da |
| author_facet |
Silva, Roberto da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Marchetti, Domingos Humberto Urbano |
| dc.contributor.author.fl_str_mv |
Silva, Roberto da |
| dc.subject.por.fl_str_mv |
Classe de Universalidade Correlation functions Ensembles de matrizes aleatórias Funções de Correlação Large numbers Law of correlated random variables Lei do semi-círculo lei dos grandes números para variáveis aleatórias random matrices ensembles semi-circle law universality class |
| topic |
Classe de Universalidade Correlation functions Ensembles de matrizes aleatórias Funções de Correlação Large numbers Law of correlated random variables Lei do semi-círculo lei dos grandes números para variáveis aleatórias random matrices ensembles semi-circle law universality class |
| description |
Em uma detalhada revisão nós obtemos a lei do semi-círculo para a densidade de estados no ensemble gaussiano de Wigner. Também falamos sobre a analogia eletrostática de Dyson, enxergando os autovalores como cargas que se repelem no círculo unitário, mostrando que nesse caso a densidade de estados é uniforme. Em um contexto mais geral nós obtemos a lei do semicírculo, provando o teorema de Glivenko-Cantelli para variáveis fortemente correlacionadas usando um método combinatorial de contagem de trajetos, o que nos dá subsídios para falar em estabilidade da lei do semi-círculo. Também, nesta dissertação nós estudamos as funções de correlação nos ensembles gaussiano e circular, mostrando que sob um adequado reescalamento elas são idênticas. Outros ensembles nesta dissertação foram investigados usando o Método de Gram para o caso em que os autovalores são limitados em um intervalo. Computamos a densidade de estados para cada um desses ensembles. Mais precisamente no ensemble de Chebychev, os resultados foram obtidos analiticamente e nesse ensemble além da densidade de estados, também traçamos grá
cos da função de correlação truncada. |
| publishDate |
2000 |
| dc.date.none.fl_str_mv |
2000-05-18 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/43/43133/tde-11062002-103116/ |
| url |
http://www.teses.usp.br/teses/disponiveis/43/43133/tde-11062002-103116/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258030574403584 |