Exportação concluída — 

Um estudo sobre funções de dependência e medidas de risco

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Gonçalves, Marcelo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-22122008-150501/
Resumo: Começamos por estudar fronteiras para uma classe especial de medidas de risco quantis, chamadas medidas de risco distorcidas. A hipótese básica é que o conhecimento da estrutura de dependência (ou seja, da distribuição conjunta) da carteira de riscos é incompleta, fazendo com que não seja possível obter um valor exato para tais medidas. Isso é muito comum na prática. Fornecemos duas formas de obter tais limites nessa situação, apresentando seus prós e contras. A modelagem de risco, em um cenário de desconhecimento total ou parcial da distribuição conjunta dos mesmos, geralmente faz uso de cópulas. Entretanto, as cópulas vêm sendo alvo de críticas na literatura recente. Um dos motivos é que as mesmas desprezam o comportamento marginal e comprimem os dados no quadrado unitário. Dentro desse cenário, apresentamos uma função que pode ser vista como uma alternativa e complemento ao uso de cópulas: função de dependência de Sibuya.
id USP_d17f772f9c99fbe3d2841ef50e9deece
oai_identifier_str oai:teses.usp.br:tde-22122008-150501
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Um estudo sobre funções de dependência e medidas de riscoA study on dependence functions and risk measures.copulasCópulas e DependênciadependenceMedidas de Riscorisk measuresComeçamos por estudar fronteiras para uma classe especial de medidas de risco quantis, chamadas medidas de risco distorcidas. A hipótese básica é que o conhecimento da estrutura de dependência (ou seja, da distribuição conjunta) da carteira de riscos é incompleta, fazendo com que não seja possível obter um valor exato para tais medidas. Isso é muito comum na prática. Fornecemos duas formas de obter tais limites nessa situação, apresentando seus prós e contras. A modelagem de risco, em um cenário de desconhecimento total ou parcial da distribuição conjunta dos mesmos, geralmente faz uso de cópulas. Entretanto, as cópulas vêm sendo alvo de críticas na literatura recente. Um dos motivos é que as mesmas desprezam o comportamento marginal e comprimem os dados no quadrado unitário. Dentro desse cenário, apresentamos uma função que pode ser vista como uma alternativa e complemento ao uso de cópulas: função de dependência de Sibuya.We begin our work studying an special class of quantile risk measures, known as distorted risk measures. The basic assumption is that the risk manager does not know the complete dependence structure (that is, the risks\'s joint distribution) embedded in the risk\'s portfolio, what makes the exact computation of the risk measure an impossible task. This is a common scenario in practical problems. We present two approaches to compute bounds for the distorted risk measures in such situation, underlining the pros and cons of each one. In risk modeling, in the absence of complete knowledge regarding their joint distribution, one often relies on the copula function approach. However, copulas have been criticized in recent publications mostly because it ignores the marginal behavior and smash the data into the unity square. In order to overcome such problems we present and alternative and complement to the copula approach: the Sibuya dependence function.Biblioteca Digitais de Teses e Dissertações da USPFabris, Antonio EliasKolev, Nikolai ValtchevGonçalves, Marcelo2008-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-22122008-150501/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T19:47:03Zoai:teses.usp.br:tde-22122008-150501Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T19:47:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Um estudo sobre funções de dependência e medidas de risco
A study on dependence functions and risk measures.
title Um estudo sobre funções de dependência e medidas de risco
spellingShingle Um estudo sobre funções de dependência e medidas de risco
Gonçalves, Marcelo
copulas
Cópulas e Dependência
dependence
Medidas de Risco
risk measures
title_short Um estudo sobre funções de dependência e medidas de risco
title_full Um estudo sobre funções de dependência e medidas de risco
title_fullStr Um estudo sobre funções de dependência e medidas de risco
title_full_unstemmed Um estudo sobre funções de dependência e medidas de risco
title_sort Um estudo sobre funções de dependência e medidas de risco
author Gonçalves, Marcelo
author_facet Gonçalves, Marcelo
author_role author
dc.contributor.none.fl_str_mv Fabris, Antonio Elias
Kolev, Nikolai Valtchev
dc.contributor.author.fl_str_mv Gonçalves, Marcelo
dc.subject.por.fl_str_mv copulas
Cópulas e Dependência
dependence
Medidas de Risco
risk measures
topic copulas
Cópulas e Dependência
dependence
Medidas de Risco
risk measures
description Começamos por estudar fronteiras para uma classe especial de medidas de risco quantis, chamadas medidas de risco distorcidas. A hipótese básica é que o conhecimento da estrutura de dependência (ou seja, da distribuição conjunta) da carteira de riscos é incompleta, fazendo com que não seja possível obter um valor exato para tais medidas. Isso é muito comum na prática. Fornecemos duas formas de obter tais limites nessa situação, apresentando seus prós e contras. A modelagem de risco, em um cenário de desconhecimento total ou parcial da distribuição conjunta dos mesmos, geralmente faz uso de cópulas. Entretanto, as cópulas vêm sendo alvo de críticas na literatura recente. Um dos motivos é que as mesmas desprezam o comportamento marginal e comprimem os dados no quadrado unitário. Dentro desse cenário, apresentamos uma função que pode ser vista como uma alternativa e complemento ao uso de cópulas: função de dependência de Sibuya.
publishDate 2008
dc.date.none.fl_str_mv 2008-11-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-22122008-150501/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-22122008-150501/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258402529476608