Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba Brasil Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial UTFPR |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/36250 |
Resumo: | The constant development of wireless network communications is transforming modern society, introducing new forms of interactivity. The 5G/New Radio (NR) network has enabled unprecedented levels of engagement, combining high transfer rates with a significant expansion in coverage area. However, it has also raised concerns about security and network transition procedures, commonly known as handovers. This paper proposes using machine learning in 5G mobile networks, specifically employing the Logistic Regression algorithm to predict handovers. Additionally, it examines a Dual Connectivity urban scenario between 5G/NR and 4G/Long Term Evolution (LTE), considering criteria such as Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), distance, and Signal-to-Interference-Plus-Noise Ratio (SINR) for handover prediction using the K-Nearest Neighbor (KNN) algorithm. The primary goal of this study is to reduce the number of handovers in both 5G and 4G networks through predictions made by KNN and Logistic Regression. This implementation demonstrates the proposal’s feasibility, its impact on network performance, and an analysis of the relevant results. |
| id |
UTFPR-12_2bcd53bbc68e027ec1b90d2e0bb9aba2 |
|---|---|
| oai_identifier_str |
oai:repositorio.utfpr.edu.br:1/36250 |
| network_acronym_str |
UTFPR-12 |
| network_name_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| repository_id_str |
|
| spelling |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithmsAnálise e classificação de handover em redes de telecomunicações móveis aplicando algoritmos de aprendizado de máquina supervisionadosTelecomunicaçõesRedes de computadoresAprendizado do computadorAnálise de regressão logísticaAprendizagem supervisionada (Aprendizado do computador)Sistemas de comunicação móvel 5GTelecommunicationComputer networksMachine learningLogistic regression analysisSupervised learning (Machine learning)5G mobile communication systemsCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAEngenharia ElétricaThe constant development of wireless network communications is transforming modern society, introducing new forms of interactivity. The 5G/New Radio (NR) network has enabled unprecedented levels of engagement, combining high transfer rates with a significant expansion in coverage area. However, it has also raised concerns about security and network transition procedures, commonly known as handovers. This paper proposes using machine learning in 5G mobile networks, specifically employing the Logistic Regression algorithm to predict handovers. Additionally, it examines a Dual Connectivity urban scenario between 5G/NR and 4G/Long Term Evolution (LTE), considering criteria such as Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), distance, and Signal-to-Interference-Plus-Noise Ratio (SINR) for handover prediction using the K-Nearest Neighbor (KNN) algorithm. The primary goal of this study is to reduce the number of handovers in both 5G and 4G networks through predictions made by KNN and Logistic Regression. This implementation demonstrates the proposal’s feasibility, its impact on network performance, and an analysis of the relevant results.O constante desenvolvimento das comunicações de redes sem fio está transformando a sociedade contemporânea, introduzindo novas formas de interatividade. A rede 5G/New Radio (NR) habilitou níveis inéditos de engajamento, combinando altas taxas de transferência com um aumento significativo na área de cobertura. No entanto, também trouxe preocupações relacionadas à segurança e aos procedimentos de transição de redes, mais conhecidos como handovers. Este trabalho propõe o uso de aprendizado de máquina em redes móveis 5G, empregando o algoritmo de Logistic Regression para a predição de handovers. Além disso, examina um cenário urbano de Dual Connectivity entre 5G/NR e 4G/Long Term Evolution (LTE), considerando critérios como Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), distância e Signal-to-Interference-Plus-Noise Ratio (SINR) para a previsão de handovers utilizando o algoritmo K-Nearest Neighbor (KNN). O objetivo principal deste estudo é reduzir o número de handovers em redes 5G e 4G por meio de predições realizadas com os algoritmos KNN e Logistic Regression. A implementação demonstra a viabilidade da proposta, o impacto no desempenho da rede e a análise dos resultados relevantes.Universidade Tecnológica Federal do ParanáCuritibaBrasilPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRChang, Bruno Senshttps://orcid.org/0000-0003-0232-7640http://lattes.cnpq.br/8237248707461788Fonseca, Anelise Munarettohttps://orcid.org/0000-0002-0182-7128http://lattes.cnpq.br/4992303457891284Chang, Bruno Senshttps://orcid.org/0000-0003-0232-7640http://lattes.cnpq.br/8237248707461788Albini, Luiz Carlos Pessoahttps://orcid.org/0000-0002-3709-9214http://lattes.cnpq.br/3699761587483592Fonseca, Mauro Sergio Pereirahttp://orcid.org/0000-0003-1604-0915http://lattes.cnpq.br/6534637358360971Fernandes, Alison Michel2025-03-27T18:14:59Z2025-03-27T18:14:59Z2024-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFERNANDES, Alison Michel. Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms. 2025. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024.http://repositorio.utfpr.edu.br/jspui/handle/1/36250enghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2025-03-28T06:12:03Zoai:repositorio.utfpr.edu.br:1/36250Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2025-03-28T06:12:03Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false |
| dc.title.none.fl_str_mv |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms Análise e classificação de handover em redes de telecomunicações móveis aplicando algoritmos de aprendizado de máquina supervisionados |
| title |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms |
| spellingShingle |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms Fernandes, Alison Michel Telecomunicações Redes de computadores Aprendizado do computador Análise de regressão logística Aprendizagem supervisionada (Aprendizado do computador) Sistemas de comunicação móvel 5G Telecommunication Computer networks Machine learning Logistic regression analysis Supervised learning (Machine learning) 5G mobile communication systems CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia Elétrica |
| title_short |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms |
| title_full |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms |
| title_fullStr |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms |
| title_full_unstemmed |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms |
| title_sort |
Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms |
| author |
Fernandes, Alison Michel |
| author_facet |
Fernandes, Alison Michel |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Chang, Bruno Sens https://orcid.org/0000-0003-0232-7640 http://lattes.cnpq.br/8237248707461788 Fonseca, Anelise Munaretto https://orcid.org/0000-0002-0182-7128 http://lattes.cnpq.br/4992303457891284 Chang, Bruno Sens https://orcid.org/0000-0003-0232-7640 http://lattes.cnpq.br/8237248707461788 Albini, Luiz Carlos Pessoa https://orcid.org/0000-0002-3709-9214 http://lattes.cnpq.br/3699761587483592 Fonseca, Mauro Sergio Pereira http://orcid.org/0000-0003-1604-0915 http://lattes.cnpq.br/6534637358360971 |
| dc.contributor.author.fl_str_mv |
Fernandes, Alison Michel |
| dc.subject.por.fl_str_mv |
Telecomunicações Redes de computadores Aprendizado do computador Análise de regressão logística Aprendizagem supervisionada (Aprendizado do computador) Sistemas de comunicação móvel 5G Telecommunication Computer networks Machine learning Logistic regression analysis Supervised learning (Machine learning) 5G mobile communication systems CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia Elétrica |
| topic |
Telecomunicações Redes de computadores Aprendizado do computador Análise de regressão logística Aprendizagem supervisionada (Aprendizado do computador) Sistemas de comunicação móvel 5G Telecommunication Computer networks Machine learning Logistic regression analysis Supervised learning (Machine learning) 5G mobile communication systems CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia Elétrica |
| description |
The constant development of wireless network communications is transforming modern society, introducing new forms of interactivity. The 5G/New Radio (NR) network has enabled unprecedented levels of engagement, combining high transfer rates with a significant expansion in coverage area. However, it has also raised concerns about security and network transition procedures, commonly known as handovers. This paper proposes using machine learning in 5G mobile networks, specifically employing the Logistic Regression algorithm to predict handovers. Additionally, it examines a Dual Connectivity urban scenario between 5G/NR and 4G/Long Term Evolution (LTE), considering criteria such as Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), distance, and Signal-to-Interference-Plus-Noise Ratio (SINR) for handover prediction using the K-Nearest Neighbor (KNN) algorithm. The primary goal of this study is to reduce the number of handovers in both 5G and 4G networks through predictions made by KNN and Logistic Regression. This implementation demonstrates the proposal’s feasibility, its impact on network performance, and an analysis of the relevant results. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-17 2025-03-27T18:14:59Z 2025-03-27T18:14:59Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
FERNANDES, Alison Michel. Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms. 2025. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024. http://repositorio.utfpr.edu.br/jspui/handle/1/36250 |
| identifier_str_mv |
FERNANDES, Alison Michel. Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms. 2025. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024. |
| url |
http://repositorio.utfpr.edu.br/jspui/handle/1/36250 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Curitiba Brasil Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial UTFPR |
| publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Curitiba Brasil Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial UTFPR |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
| instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
| instacron_str |
UTFPR |
| institution |
UTFPR |
| reponame_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| collection |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| repository.name.fl_str_mv |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR) |
| repository.mail.fl_str_mv |
riut@utfpr.edu.br || sibi@utfpr.edu.br |
| _version_ |
1850498326748725248 |