Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Fernandes, Alison Michel
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/36250
Resumo: The constant development of wireless network communications is transforming modern society, introducing new forms of interactivity. The 5G/New Radio (NR) network has enabled unprecedented levels of engagement, combining high transfer rates with a significant expansion in coverage area. However, it has also raised concerns about security and network transition procedures, commonly known as handovers. This paper proposes using machine learning in 5G mobile networks, specifically employing the Logistic Regression algorithm to predict handovers. Additionally, it examines a Dual Connectivity urban scenario between 5G/NR and 4G/Long Term Evolution (LTE), considering criteria such as Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), distance, and Signal-to-Interference-Plus-Noise Ratio (SINR) for handover prediction using the K-Nearest Neighbor (KNN) algorithm. The primary goal of this study is to reduce the number of handovers in both 5G and 4G networks through predictions made by KNN and Logistic Regression. This implementation demonstrates the proposal’s feasibility, its impact on network performance, and an analysis of the relevant results.
id UTFPR-12_2bcd53bbc68e027ec1b90d2e0bb9aba2
oai_identifier_str oai:repositorio.utfpr.edu.br:1/36250
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithmsAnálise e classificação de handover em redes de telecomunicações móveis aplicando algoritmos de aprendizado de máquina supervisionadosTelecomunicaçõesRedes de computadoresAprendizado do computadorAnálise de regressão logísticaAprendizagem supervisionada (Aprendizado do computador)Sistemas de comunicação móvel 5GTelecommunicationComputer networksMachine learningLogistic regression analysisSupervised learning (Machine learning)5G mobile communication systemsCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAEngenharia ElétricaThe constant development of wireless network communications is transforming modern society, introducing new forms of interactivity. The 5G/New Radio (NR) network has enabled unprecedented levels of engagement, combining high transfer rates with a significant expansion in coverage area. However, it has also raised concerns about security and network transition procedures, commonly known as handovers. This paper proposes using machine learning in 5G mobile networks, specifically employing the Logistic Regression algorithm to predict handovers. Additionally, it examines a Dual Connectivity urban scenario between 5G/NR and 4G/Long Term Evolution (LTE), considering criteria such as Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), distance, and Signal-to-Interference-Plus-Noise Ratio (SINR) for handover prediction using the K-Nearest Neighbor (KNN) algorithm. The primary goal of this study is to reduce the number of handovers in both 5G and 4G networks through predictions made by KNN and Logistic Regression. This implementation demonstrates the proposal’s feasibility, its impact on network performance, and an analysis of the relevant results.O constante desenvolvimento das comunicações de redes sem fio está transformando a sociedade contemporânea, introduzindo novas formas de interatividade. A rede 5G/New Radio (NR) habilitou níveis inéditos de engajamento, combinando altas taxas de transferência com um aumento significativo na área de cobertura. No entanto, também trouxe preocupações relacionadas à segurança e aos procedimentos de transição de redes, mais conhecidos como handovers. Este trabalho propõe o uso de aprendizado de máquina em redes móveis 5G, empregando o algoritmo de Logistic Regression para a predição de handovers. Além disso, examina um cenário urbano de Dual Connectivity entre 5G/NR e 4G/Long Term Evolution (LTE), considerando critérios como Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), distância e Signal-to-Interference-Plus-Noise Ratio (SINR) para a previsão de handovers utilizando o algoritmo K-Nearest Neighbor (KNN). O objetivo principal deste estudo é reduzir o número de handovers em redes 5G e 4G por meio de predições realizadas com os algoritmos KNN e Logistic Regression. A implementação demonstra a viabilidade da proposta, o impacto no desempenho da rede e a análise dos resultados relevantes.Universidade Tecnológica Federal do ParanáCuritibaBrasilPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRChang, Bruno Senshttps://orcid.org/0000-0003-0232-7640http://lattes.cnpq.br/8237248707461788Fonseca, Anelise Munarettohttps://orcid.org/0000-0002-0182-7128http://lattes.cnpq.br/4992303457891284Chang, Bruno Senshttps://orcid.org/0000-0003-0232-7640http://lattes.cnpq.br/8237248707461788Albini, Luiz Carlos Pessoahttps://orcid.org/0000-0002-3709-9214http://lattes.cnpq.br/3699761587483592Fonseca, Mauro Sergio Pereirahttp://orcid.org/0000-0003-1604-0915http://lattes.cnpq.br/6534637358360971Fernandes, Alison Michel2025-03-27T18:14:59Z2025-03-27T18:14:59Z2024-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFERNANDES, Alison Michel. Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms. 2025. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024.http://repositorio.utfpr.edu.br/jspui/handle/1/36250enghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2025-03-28T06:12:03Zoai:repositorio.utfpr.edu.br:1/36250Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2025-03-28T06:12:03Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
Análise e classificação de handover em redes de telecomunicações móveis aplicando algoritmos de aprendizado de máquina supervisionados
title Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
spellingShingle Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
Fernandes, Alison Michel
Telecomunicações
Redes de computadores
Aprendizado do computador
Análise de regressão logística
Aprendizagem supervisionada (Aprendizado do computador)
Sistemas de comunicação móvel 5G
Telecommunication
Computer networks
Machine learning
Logistic regression analysis
Supervised learning (Machine learning)
5G mobile communication systems
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia Elétrica
title_short Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
title_full Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
title_fullStr Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
title_full_unstemmed Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
title_sort Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms
author Fernandes, Alison Michel
author_facet Fernandes, Alison Michel
author_role author
dc.contributor.none.fl_str_mv Chang, Bruno Sens
https://orcid.org/0000-0003-0232-7640
http://lattes.cnpq.br/8237248707461788
Fonseca, Anelise Munaretto
https://orcid.org/0000-0002-0182-7128
http://lattes.cnpq.br/4992303457891284
Chang, Bruno Sens
https://orcid.org/0000-0003-0232-7640
http://lattes.cnpq.br/8237248707461788
Albini, Luiz Carlos Pessoa
https://orcid.org/0000-0002-3709-9214
http://lattes.cnpq.br/3699761587483592
Fonseca, Mauro Sergio Pereira
http://orcid.org/0000-0003-1604-0915
http://lattes.cnpq.br/6534637358360971
dc.contributor.author.fl_str_mv Fernandes, Alison Michel
dc.subject.por.fl_str_mv Telecomunicações
Redes de computadores
Aprendizado do computador
Análise de regressão logística
Aprendizagem supervisionada (Aprendizado do computador)
Sistemas de comunicação móvel 5G
Telecommunication
Computer networks
Machine learning
Logistic regression analysis
Supervised learning (Machine learning)
5G mobile communication systems
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia Elétrica
topic Telecomunicações
Redes de computadores
Aprendizado do computador
Análise de regressão logística
Aprendizagem supervisionada (Aprendizado do computador)
Sistemas de comunicação móvel 5G
Telecommunication
Computer networks
Machine learning
Logistic regression analysis
Supervised learning (Machine learning)
5G mobile communication systems
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Engenharia Elétrica
description The constant development of wireless network communications is transforming modern society, introducing new forms of interactivity. The 5G/New Radio (NR) network has enabled unprecedented levels of engagement, combining high transfer rates with a significant expansion in coverage area. However, it has also raised concerns about security and network transition procedures, commonly known as handovers. This paper proposes using machine learning in 5G mobile networks, specifically employing the Logistic Regression algorithm to predict handovers. Additionally, it examines a Dual Connectivity urban scenario between 5G/NR and 4G/Long Term Evolution (LTE), considering criteria such as Received Signal Strength Indicator (RSSI), Reference Signal Received Power (RSRP), distance, and Signal-to-Interference-Plus-Noise Ratio (SINR) for handover prediction using the K-Nearest Neighbor (KNN) algorithm. The primary goal of this study is to reduce the number of handovers in both 5G and 4G networks through predictions made by KNN and Logistic Regression. This implementation demonstrates the proposal’s feasibility, its impact on network performance, and an analysis of the relevant results.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-17
2025-03-27T18:14:59Z
2025-03-27T18:14:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERNANDES, Alison Michel. Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms. 2025. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024.
http://repositorio.utfpr.edu.br/jspui/handle/1/36250
identifier_str_mv FERNANDES, Alison Michel. Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms. 2025. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2024.
url http://repositorio.utfpr.edu.br/jspui/handle/1/36250
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498326748725248