Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Ponta Grossa Brasil Programa de Pós-Graduação em Engenharia Elétrica UTFPR |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/25060 |
Resumo: | The objective of this work is to realize a comparative study of which bio-inspired metaheuristic strategies are the best to be used when finding the optimal gains for a Gaussian Adaptive PID control system applied to a Buck Converter. This comes from two necessities, the first one is that to surpass the performance of linear control systems a more advanced strategy such as adaptive control is required; the second is that since there are no deterministic optimization methods for such strategies, the use of metaheuristics is deemed necessary, and according to the No Free Lunch theorem such comparative studies ought to be made to understand what optimization techniques ares better suitable for such a problem. The chosen techniques were the Genetic Algorithm, the Particle Swarm Optimization and the Differential Evolution. The Gaussian function is employed as the adaptive rule because it is a smooth curve with smooth derivatives that avoids the potential of chattering and abrupt control changes. After evaluating the responses found from simulating all variations of each of the optimization strategies we were able to create an analytical and statistical comparison of each technique and show how an adaptive control system can create a faster and more robust response when compared to the linear PID. |
| id |
UTFPR-12_adbb1380913372b8278c2699e8f5ce74 |
|---|---|
| oai_identifier_str |
oai:repositorio.utfpr.edu.br:1/25060 |
| network_acronym_str |
UTFPR-12 |
| network_name_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| repository_id_str |
|
| spelling |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converterAlgoritmos de otimização bio-inspirados aplicados ao controle de um conversor BuckControladores PIDAlgorítmos genéticosHeurísticaPID controllersGenetic algorithmsHeuristicCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAEngenharia/Tecnologia/GestãoThe objective of this work is to realize a comparative study of which bio-inspired metaheuristic strategies are the best to be used when finding the optimal gains for a Gaussian Adaptive PID control system applied to a Buck Converter. This comes from two necessities, the first one is that to surpass the performance of linear control systems a more advanced strategy such as adaptive control is required; the second is that since there are no deterministic optimization methods for such strategies, the use of metaheuristics is deemed necessary, and according to the No Free Lunch theorem such comparative studies ought to be made to understand what optimization techniques ares better suitable for such a problem. The chosen techniques were the Genetic Algorithm, the Particle Swarm Optimization and the Differential Evolution. The Gaussian function is employed as the adaptive rule because it is a smooth curve with smooth derivatives that avoids the potential of chattering and abrupt control changes. After evaluating the responses found from simulating all variations of each of the optimization strategies we were able to create an analytical and statistical comparison of each technique and show how an adaptive control system can create a faster and more robust response when compared to the linear PID.O objetivo deste trabalho é criar um estudo comparativo de quais estratégias metaheurísticas bioinspiradas podem ser as melhores para otimizar os ganhos ótimos de um sistema de controle PID Adaptativo Gaussiano para um Conversor Buck. Isso vem de duas necessidades, a primeira é que para superar o desempenho dos sistemas de controle linear é necessária uma estratégia mais avançada como o controle adaptativo; a segunda é que como não existem métodos de otimização determinísticos para tais estratégias, o uso de metaheurísticas é considerado necessário, e de acordo com o teorema do No Free Lunch tais estudos comparativos devem ser feitos para entender quais técnicas de otimização são mais adequadas para tal problema. As técnicas escolhidas foram o Algoritmo Genético, a Otimização do Enxame de Partículas e a Evolução Diferencial. O Gaussian Adaptive PID (GAPID) foi escolhido para o controle adaptativo por ser ser baseado na função Gaussiana, que é uma curva suave com derivadas suaves que evita vibrações e mudanças bruscas no controle. Depois de avaliar as respostas encontradas na simulação de todas as variações de cada uma das estratégias de otimização, foi criada uma comparação analítica e estatística de cada técnica mostrando como um sistema de controle adaptativo pode gerar uma resposta mais rápida e robusta quando comparado ao PID linear.Universidade Tecnológica Federal do ParanáPonta GrossaBrasilPrograma de Pós-Graduação em Engenharia ElétricaUTFPRKaster, Mauricio dos Santoshttps://orcid.org/0000-0002-7687-1297http://lattes.cnpq.br/5494434934031784Siqueira, Hugo Valadareshttps://orcid.org/0000-0002-1278-4602http://lattes.cnpq.br/6904980376005290Kaster, Mauricio dos Santoshttps://orcid.org/0000-0002-7687-1297http://lattes.cnpq.br/5494434934031784Trojan, Flaviohttps://orcid.org/0000-0003-2274-5321http://lattes.cnpq.br/1688457940211697Martins, Marcella Scoczynski Ribeirohttps://orcid.org/0000-0002-5716-4968http://lattes.cnpq.br/5212122361603572Parpinelli, Rafael Stubshttps://orcid.org/0000-0001-7326-5032http://lattes.cnpq.br/4456007001373501Itaborahy Filho, Marco Antonio2021-05-27T21:17:44Z2021-05-27T21:17:44Z2021-03-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfITABORAHY FILHO, Marco Antonio. Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter. 2021. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2021.http://repositorio.utfpr.edu.br/jspui/handle/1/25060engAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2021-05-28T06:11:54Zoai:repositorio.utfpr.edu.br:1/25060Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2021-05-28T06:11:54Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false |
| dc.title.none.fl_str_mv |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter Algoritmos de otimização bio-inspirados aplicados ao controle de um conversor Buck |
| title |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter |
| spellingShingle |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter Itaborahy Filho, Marco Antonio Controladores PID Algorítmos genéticos Heurística PID controllers Genetic algorithms Heuristic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia/Tecnologia/Gestão |
| title_short |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter |
| title_full |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter |
| title_fullStr |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter |
| title_full_unstemmed |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter |
| title_sort |
Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter |
| author |
Itaborahy Filho, Marco Antonio |
| author_facet |
Itaborahy Filho, Marco Antonio |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Kaster, Mauricio dos Santos https://orcid.org/0000-0002-7687-1297 http://lattes.cnpq.br/5494434934031784 Siqueira, Hugo Valadares https://orcid.org/0000-0002-1278-4602 http://lattes.cnpq.br/6904980376005290 Kaster, Mauricio dos Santos https://orcid.org/0000-0002-7687-1297 http://lattes.cnpq.br/5494434934031784 Trojan, Flavio https://orcid.org/0000-0003-2274-5321 http://lattes.cnpq.br/1688457940211697 Martins, Marcella Scoczynski Ribeiro https://orcid.org/0000-0002-5716-4968 http://lattes.cnpq.br/5212122361603572 Parpinelli, Rafael Stubs https://orcid.org/0000-0001-7326-5032 http://lattes.cnpq.br/4456007001373501 |
| dc.contributor.author.fl_str_mv |
Itaborahy Filho, Marco Antonio |
| dc.subject.por.fl_str_mv |
Controladores PID Algorítmos genéticos Heurística PID controllers Genetic algorithms Heuristic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia/Tecnologia/Gestão |
| topic |
Controladores PID Algorítmos genéticos Heurística PID controllers Genetic algorithms Heuristic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia/Tecnologia/Gestão |
| description |
The objective of this work is to realize a comparative study of which bio-inspired metaheuristic strategies are the best to be used when finding the optimal gains for a Gaussian Adaptive PID control system applied to a Buck Converter. This comes from two necessities, the first one is that to surpass the performance of linear control systems a more advanced strategy such as adaptive control is required; the second is that since there are no deterministic optimization methods for such strategies, the use of metaheuristics is deemed necessary, and according to the No Free Lunch theorem such comparative studies ought to be made to understand what optimization techniques ares better suitable for such a problem. The chosen techniques were the Genetic Algorithm, the Particle Swarm Optimization and the Differential Evolution. The Gaussian function is employed as the adaptive rule because it is a smooth curve with smooth derivatives that avoids the potential of chattering and abrupt control changes. After evaluating the responses found from simulating all variations of each of the optimization strategies we were able to create an analytical and statistical comparison of each technique and show how an adaptive control system can create a faster and more robust response when compared to the linear PID. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-05-27T21:17:44Z 2021-05-27T21:17:44Z 2021-03-12 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
ITABORAHY FILHO, Marco Antonio. Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter. 2021. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2021. http://repositorio.utfpr.edu.br/jspui/handle/1/25060 |
| identifier_str_mv |
ITABORAHY FILHO, Marco Antonio. Bio-inspired optimization algorithms applied to the GAPID control of a Buck converter. 2021. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2021. |
| url |
http://repositorio.utfpr.edu.br/jspui/handle/1/25060 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Ponta Grossa Brasil Programa de Pós-Graduação em Engenharia Elétrica UTFPR |
| publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Ponta Grossa Brasil Programa de Pós-Graduação em Engenharia Elétrica UTFPR |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
| instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
| instacron_str |
UTFPR |
| institution |
UTFPR |
| reponame_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| collection |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| repository.name.fl_str_mv |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR) |
| repository.mail.fl_str_mv |
riut@utfpr.edu.br || sibi@utfpr.edu.br |
| _version_ |
1850498339071590400 |