Precificação de opções do mercado brasileiro utilizando processo de variância gama
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/10438/10516 |
Resumo: | Apesar de seu uso amplo no mercado financeiro para modelagem dos preços de ações, o modelo de Black Scholes, assim como os demais modelos de difusão, possui por hipótese limitações que não permitem a ele capturar alguns comportamentos típicos desse mercado. Visto isso, diversos autores propuseram que os preços das ações seguem modelos de saltos puros sendo sua modelagem estruturada por um processo de Lévy. Nesse contexto, este trabalho visa apresentar um estudo sobre a precificação de opções do utilizando um modelo desenvolvido por Madan e Seneta (1990) que se baseia no processo de saltos puros conhecido como variância gama (VG). Utilizando como base dados as cotações históricas diárias de ações e opções do mercado brasileiro, além do comportamento da clássica curva ‘smile’ de volatilidade, o trabalho apresenta as curvas de tendência e taxa de variância presentes no modelo de variância gama. Juntos essas três curvas podem ser utilizadas como ferramentas para explicar melhor o comportamento dos preços dos ativos. |
| id |
FGV_ac7beb2b39a41a5de28c141c111b1ea6 |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/10516 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
|
| spelling |
Santana, Flávio Ryan da SilvaEscolas::EESPMarques, Alessandro MartimGrisi, Rafael de Mattosvirtual::414Pinto, Afonso de Campos2013-02-20T12:13:12Z2013-02-20T12:13:12Z2013-01-24https://hdl.handle.net/10438/10516Apesar de seu uso amplo no mercado financeiro para modelagem dos preços de ações, o modelo de Black Scholes, assim como os demais modelos de difusão, possui por hipótese limitações que não permitem a ele capturar alguns comportamentos típicos desse mercado. Visto isso, diversos autores propuseram que os preços das ações seguem modelos de saltos puros sendo sua modelagem estruturada por um processo de Lévy. Nesse contexto, este trabalho visa apresentar um estudo sobre a precificação de opções do utilizando um modelo desenvolvido por Madan e Seneta (1990) que se baseia no processo de saltos puros conhecido como variância gama (VG). Utilizando como base dados as cotações históricas diárias de ações e opções do mercado brasileiro, além do comportamento da clássica curva ‘smile’ de volatilidade, o trabalho apresenta as curvas de tendência e taxa de variância presentes no modelo de variância gama. Juntos essas três curvas podem ser utilizadas como ferramentas para explicar melhor o comportamento dos preços dos ativos.Despite its widespread use in equity pricing modeling, by hypothesis, the Black Scholes model (like other diffusion models) has limitations that don’t allow it to capture some typical market behaviors. Due this fact, several authors have proposed that stock prices follow a pure jump models and their modeling is structured by a Lévy process. In this context, this paper shows a study on the options pricing using a model developed by Madan and Seneta (1990) which is based on pure jumps process known as variance gamma (VG). This work presents the study of two new curves plotted from the variance gamma model in addition to the classical volatility smile curve. Together these three curves can be used as tools to better explain the behavior of asset prices. As database were used Brazilian historical stocks e options prices.porVariância gamaAvaliação de ativosPrecificação de opçõesEconomiaProcesso estocásticoMercado de opçõesPrecificação de opções do mercado brasileiro utilizando processo de variância gamainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1info:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVPublicationce90fcdf-91f3-4cad-a509-ae29ffc6af50virtual::414-1ce90fcdf-91f3-4cad-a509-ae29ffc6af50virtual::414-1ORIGINALTESE - VG_mercado brasileiro_18fev2013.pdfTESE - VG_mercado brasileiro_18fev2013.pdfPDFapplication/pdf1388200https://repositorio.fgv.br/bitstreams/3700173c-6ec2-4f40-974a-8f47019e0914/download8018c5327785c85378f59fb2546c0d81MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/0898b262-44d5-480c-a4fb-4a0de31040eb/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTTESE - VG_mercado brasileiro_18fev2013.pdf.txtTESE - VG_mercado brasileiro_18fev2013.pdf.txtExtracted Texttext/plain80795https://repositorio.fgv.br/bitstreams/42e21839-e761-4ba9-911d-9089d68f3826/download201c5539ec3db479379c8eb1805446d7MD53THUMBNAILTESE - VG_mercado brasileiro_18fev2013.pdf.jpgTESE - VG_mercado brasileiro_18fev2013.pdf.jpgGenerated Thumbnailimage/jpeg1497https://repositorio.fgv.br/bitstreams/e34d15db-eb90-4ec6-9344-37db3068d8fc/download6bfe7eeb4de8f160124bde0bc26ed321MD5410438/105162024-12-06 17:59:27.021open.accessoai:repositorio.fgv.br:10438/10516https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-12-06T17:59:27Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
| dc.title.por.fl_str_mv |
Precificação de opções do mercado brasileiro utilizando processo de variância gama |
| title |
Precificação de opções do mercado brasileiro utilizando processo de variância gama |
| spellingShingle |
Precificação de opções do mercado brasileiro utilizando processo de variância gama Santana, Flávio Ryan da Silva Variância gama Avaliação de ativos Precificação de opções Economia Processo estocástico Mercado de opções |
| title_short |
Precificação de opções do mercado brasileiro utilizando processo de variância gama |
| title_full |
Precificação de opções do mercado brasileiro utilizando processo de variância gama |
| title_fullStr |
Precificação de opções do mercado brasileiro utilizando processo de variância gama |
| title_full_unstemmed |
Precificação de opções do mercado brasileiro utilizando processo de variância gama |
| title_sort |
Precificação de opções do mercado brasileiro utilizando processo de variância gama |
| author |
Santana, Flávio Ryan da Silva |
| author_facet |
Santana, Flávio Ryan da Silva |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
| dc.contributor.member.none.fl_str_mv |
Marques, Alessandro Martim Grisi, Rafael de Mattos |
| dc.contributor.author.fl_str_mv |
Santana, Flávio Ryan da Silva |
| dc.contributor.advisor1ID.fl_str_mv |
virtual::414 |
| dc.contributor.advisor1.fl_str_mv |
Pinto, Afonso de Campos |
| contributor_str_mv |
Pinto, Afonso de Campos |
| dc.subject.por.fl_str_mv |
Variância gama Avaliação de ativos Precificação de opções |
| topic |
Variância gama Avaliação de ativos Precificação de opções Economia Processo estocástico Mercado de opções |
| dc.subject.area.por.fl_str_mv |
Economia |
| dc.subject.bibliodata.por.fl_str_mv |
Processo estocástico Mercado de opções |
| description |
Apesar de seu uso amplo no mercado financeiro para modelagem dos preços de ações, o modelo de Black Scholes, assim como os demais modelos de difusão, possui por hipótese limitações que não permitem a ele capturar alguns comportamentos típicos desse mercado. Visto isso, diversos autores propuseram que os preços das ações seguem modelos de saltos puros sendo sua modelagem estruturada por um processo de Lévy. Nesse contexto, este trabalho visa apresentar um estudo sobre a precificação de opções do utilizando um modelo desenvolvido por Madan e Seneta (1990) que se baseia no processo de saltos puros conhecido como variância gama (VG). Utilizando como base dados as cotações históricas diárias de ações e opções do mercado brasileiro, além do comportamento da clássica curva ‘smile’ de volatilidade, o trabalho apresenta as curvas de tendência e taxa de variância presentes no modelo de variância gama. Juntos essas três curvas podem ser utilizadas como ferramentas para explicar melhor o comportamento dos preços dos ativos. |
| publishDate |
2013 |
| dc.date.accessioned.fl_str_mv |
2013-02-20T12:13:12Z |
| dc.date.available.fl_str_mv |
2013-02-20T12:13:12Z |
| dc.date.issued.fl_str_mv |
2013-01-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/10516 |
| url |
https://hdl.handle.net/10438/10516 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
-1 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/3700173c-6ec2-4f40-974a-8f47019e0914/download https://repositorio.fgv.br/bitstreams/0898b262-44d5-480c-a4fb-4a0de31040eb/download https://repositorio.fgv.br/bitstreams/42e21839-e761-4ba9-911d-9089d68f3826/download https://repositorio.fgv.br/bitstreams/e34d15db-eb90-4ec6-9344-37db3068d8fc/download |
| bitstream.checksum.fl_str_mv |
8018c5327785c85378f59fb2546c0d81 dfb340242cced38a6cca06c627998fa1 201c5539ec3db479379c8eb1805446d7 6bfe7eeb4de8f160124bde0bc26ed321 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827842553576161280 |