Precificação de opções do mercado brasileiro utilizando processo de variância gama

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Santana, Flávio Ryan da Silva
Orientador(a): Pinto, Afonso de Campos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/10438/10516
Resumo: Apesar de seu uso amplo no mercado financeiro para modelagem dos preços de ações, o modelo de Black Scholes, assim como os demais modelos de difusão, possui por hipótese limitações que não permitem a ele capturar alguns comportamentos típicos desse mercado. Visto isso, diversos autores propuseram que os preços das ações seguem modelos de saltos puros sendo sua modelagem estruturada por um processo de Lévy. Nesse contexto, este trabalho visa apresentar um estudo sobre a precificação de opções do utilizando um modelo desenvolvido por Madan e Seneta (1990) que se baseia no processo de saltos puros conhecido como variância gama (VG). Utilizando como base dados as cotações históricas diárias de ações e opções do mercado brasileiro, além do comportamento da clássica curva ‘smile’ de volatilidade, o trabalho apresenta as curvas de tendência e taxa de variância presentes no modelo de variância gama. Juntos essas três curvas podem ser utilizadas como ferramentas para explicar melhor o comportamento dos preços dos ativos.
id FGV_ac7beb2b39a41a5de28c141c111b1ea6
oai_identifier_str oai:repositorio.fgv.br:10438/10516
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str
spelling Santana, Flávio Ryan da SilvaEscolas::EESPMarques, Alessandro MartimGrisi, Rafael de Mattosvirtual::414Pinto, Afonso de Campos2013-02-20T12:13:12Z2013-02-20T12:13:12Z2013-01-24https://hdl.handle.net/10438/10516Apesar de seu uso amplo no mercado financeiro para modelagem dos preços de ações, o modelo de Black Scholes, assim como os demais modelos de difusão, possui por hipótese limitações que não permitem a ele capturar alguns comportamentos típicos desse mercado. Visto isso, diversos autores propuseram que os preços das ações seguem modelos de saltos puros sendo sua modelagem estruturada por um processo de Lévy. Nesse contexto, este trabalho visa apresentar um estudo sobre a precificação de opções do utilizando um modelo desenvolvido por Madan e Seneta (1990) que se baseia no processo de saltos puros conhecido como variância gama (VG). Utilizando como base dados as cotações históricas diárias de ações e opções do mercado brasileiro, além do comportamento da clássica curva ‘smile’ de volatilidade, o trabalho apresenta as curvas de tendência e taxa de variância presentes no modelo de variância gama. Juntos essas três curvas podem ser utilizadas como ferramentas para explicar melhor o comportamento dos preços dos ativos.Despite its widespread use in equity pricing modeling, by hypothesis, the Black Scholes model (like other diffusion models) has limitations that don’t allow it to capture some typical market behaviors. Due this fact, several authors have proposed that stock prices follow a pure jump models and their modeling is structured by a Lévy process. In this context, this paper shows a study on the options pricing using a model developed by Madan and Seneta (1990) which is based on pure jumps process known as variance gamma (VG). This work presents the study of two new curves plotted from the variance gamma model in addition to the classical volatility smile curve. Together these three curves can be used as tools to better explain the behavior of asset prices. As database were used Brazilian historical stocks e options prices.porVariância gamaAvaliação de ativosPrecificação de opçõesEconomiaProcesso estocásticoMercado de opçõesPrecificação de opções do mercado brasileiro utilizando processo de variância gamainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1info:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVPublicationce90fcdf-91f3-4cad-a509-ae29ffc6af50virtual::414-1ce90fcdf-91f3-4cad-a509-ae29ffc6af50virtual::414-1ORIGINALTESE - VG_mercado brasileiro_18fev2013.pdfTESE - VG_mercado brasileiro_18fev2013.pdfPDFapplication/pdf1388200https://repositorio.fgv.br/bitstreams/3700173c-6ec2-4f40-974a-8f47019e0914/download8018c5327785c85378f59fb2546c0d81MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/0898b262-44d5-480c-a4fb-4a0de31040eb/downloaddfb340242cced38a6cca06c627998fa1MD52TEXTTESE - VG_mercado brasileiro_18fev2013.pdf.txtTESE - VG_mercado brasileiro_18fev2013.pdf.txtExtracted Texttext/plain80795https://repositorio.fgv.br/bitstreams/42e21839-e761-4ba9-911d-9089d68f3826/download201c5539ec3db479379c8eb1805446d7MD53THUMBNAILTESE - VG_mercado brasileiro_18fev2013.pdf.jpgTESE - VG_mercado brasileiro_18fev2013.pdf.jpgGenerated Thumbnailimage/jpeg1497https://repositorio.fgv.br/bitstreams/e34d15db-eb90-4ec6-9344-37db3068d8fc/download6bfe7eeb4de8f160124bde0bc26ed321MD5410438/105162024-12-06 17:59:27.021open.accessoai:repositorio.fgv.br:10438/10516https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-12-06T17:59:27Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Precificação de opções do mercado brasileiro utilizando processo de variância gama
title Precificação de opções do mercado brasileiro utilizando processo de variância gama
spellingShingle Precificação de opções do mercado brasileiro utilizando processo de variância gama
Santana, Flávio Ryan da Silva
Variância gama
Avaliação de ativos
Precificação de opções
Economia
Processo estocástico
Mercado de opções
title_short Precificação de opções do mercado brasileiro utilizando processo de variância gama
title_full Precificação de opções do mercado brasileiro utilizando processo de variância gama
title_fullStr Precificação de opções do mercado brasileiro utilizando processo de variância gama
title_full_unstemmed Precificação de opções do mercado brasileiro utilizando processo de variância gama
title_sort Precificação de opções do mercado brasileiro utilizando processo de variância gama
author Santana, Flávio Ryan da Silva
author_facet Santana, Flávio Ryan da Silva
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Marques, Alessandro Martim
Grisi, Rafael de Mattos
dc.contributor.author.fl_str_mv Santana, Flávio Ryan da Silva
dc.contributor.advisor1ID.fl_str_mv virtual::414
dc.contributor.advisor1.fl_str_mv Pinto, Afonso de Campos
contributor_str_mv Pinto, Afonso de Campos
dc.subject.por.fl_str_mv Variância gama
Avaliação de ativos
Precificação de opções
topic Variância gama
Avaliação de ativos
Precificação de opções
Economia
Processo estocástico
Mercado de opções
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Processo estocástico
Mercado de opções
description Apesar de seu uso amplo no mercado financeiro para modelagem dos preços de ações, o modelo de Black Scholes, assim como os demais modelos de difusão, possui por hipótese limitações que não permitem a ele capturar alguns comportamentos típicos desse mercado. Visto isso, diversos autores propuseram que os preços das ações seguem modelos de saltos puros sendo sua modelagem estruturada por um processo de Lévy. Nesse contexto, este trabalho visa apresentar um estudo sobre a precificação de opções do utilizando um modelo desenvolvido por Madan e Seneta (1990) que se baseia no processo de saltos puros conhecido como variância gama (VG). Utilizando como base dados as cotações históricas diárias de ações e opções do mercado brasileiro, além do comportamento da clássica curva ‘smile’ de volatilidade, o trabalho apresenta as curvas de tendência e taxa de variância presentes no modelo de variância gama. Juntos essas três curvas podem ser utilizadas como ferramentas para explicar melhor o comportamento dos preços dos ativos.
publishDate 2013
dc.date.accessioned.fl_str_mv 2013-02-20T12:13:12Z
dc.date.available.fl_str_mv 2013-02-20T12:13:12Z
dc.date.issued.fl_str_mv 2013-01-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/10516
url https://hdl.handle.net/10438/10516
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv -1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/3700173c-6ec2-4f40-974a-8f47019e0914/download
https://repositorio.fgv.br/bitstreams/0898b262-44d5-480c-a4fb-4a0de31040eb/download
https://repositorio.fgv.br/bitstreams/42e21839-e761-4ba9-911d-9089d68f3826/download
https://repositorio.fgv.br/bitstreams/e34d15db-eb90-4ec6-9344-37db3068d8fc/download
bitstream.checksum.fl_str_mv 8018c5327785c85378f59fb2546c0d81
dfb340242cced38a6cca06c627998fa1
201c5539ec3db479379c8eb1805446d7
6bfe7eeb4de8f160124bde0bc26ed321
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1827842553576161280