Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
| Ano de defesa: | 2015 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , , , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Nove de Julho
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação de Mestrado e Doutorado em Engenharia de Produção
|
| Departamento: |
Engenharia
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://bibliotecatede.uninove.br/handle/tede/1124 |
Resumo: | In recent years, the Vehicle Routing Problem (VRP) has attracted an increasing attention from researchers due to the great difficulty of its solution and its presence in various practical situations. As consequence, there has been great effort to develop more robust, agile and flexible algorithms that can be modeled according to the scenario that describes the problem. The Capacitated Vehicle Routing Problem (CVRP) is a version of VRP and consists in determining a set of routes to be followed by a fleet of homogeneous vehicles, which must serve a set of customers. The objective is to minimize the total cost of the routes subject to the following restrictions: i) routes must start and end in the same distribution center; ii) each customer must be visited once and its demand must be met in full by only one vehicle and iii) the sum of customers' demands included in a route cannot exceed the vehicle capacity. The CVRP belongs to the class of NP-hard problems, that is, problems whose the solution usually requires non-polynomial complexity time algorithms and because of this are usually resolved with the use of heuristic and metaheuristics algorithms. In this work, it was investigated the optimization of CVRP using Genetic Algorithm (GA) with alternative chromosome representations and heuristics. To this end, three strategies, each one employing a different model of chromosome representation for encoding solution in AG were proposed. In addition, the heuristics of Gillett and Miller to generate solutions that are included in the initial population of GA and Hill-climbing for refinement of GA solutions, after a number of generations without improvement, were adopted. In the performed experiments, the results obtained by the proposed strategies were compared with each other and also with the best results found in the literature for a set of known instances. These experiments showed that the proposed strategies provided good results with respect to quality of solutions well as the computational cost. In addition, it was possible to evaluate the viability of each employed chromosome representation and the contribution of the heuristics in the convergence process of GA. |
| id |
NOVE_da513232f23ce7a1dd29ac9927c76f2e |
|---|---|
| oai_identifier_str |
oai:localhost:tede/1124 |
| network_acronym_str |
NOVE |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
| repository_id_str |
|
| spelling |
Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Schimit , Pedro Henrique Triguishttp://lattes.cnpq.br/9938713955885093Pereira, Fabio Henriquehttp://lattes.cnpq.br/3713755920970596Junqueira, Leonardohttp://lattes.cnpq.br/2179657609596194Silva Filho, Oscar Salvianohttp://lattes.cnpq.br/9318920743205236http://lattes.cnpq.br/8555096292361760Lima, Stanley Jefferson De Araujo2015-07-17T16:00:19Z2015-01-27Lima, Stanley Jefferson De Araujo. Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas. 2015. 101 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo .http://bibliotecatede.uninove.br/handle/tede/1124In recent years, the Vehicle Routing Problem (VRP) has attracted an increasing attention from researchers due to the great difficulty of its solution and its presence in various practical situations. As consequence, there has been great effort to develop more robust, agile and flexible algorithms that can be modeled according to the scenario that describes the problem. The Capacitated Vehicle Routing Problem (CVRP) is a version of VRP and consists in determining a set of routes to be followed by a fleet of homogeneous vehicles, which must serve a set of customers. The objective is to minimize the total cost of the routes subject to the following restrictions: i) routes must start and end in the same distribution center; ii) each customer must be visited once and its demand must be met in full by only one vehicle and iii) the sum of customers' demands included in a route cannot exceed the vehicle capacity. The CVRP belongs to the class of NP-hard problems, that is, problems whose the solution usually requires non-polynomial complexity time algorithms and because of this are usually resolved with the use of heuristic and metaheuristics algorithms. In this work, it was investigated the optimization of CVRP using Genetic Algorithm (GA) with alternative chromosome representations and heuristics. To this end, three strategies, each one employing a different model of chromosome representation for encoding solution in AG were proposed. In addition, the heuristics of Gillett and Miller to generate solutions that are included in the initial population of GA and Hill-climbing for refinement of GA solutions, after a number of generations without improvement, were adopted. In the performed experiments, the results obtained by the proposed strategies were compared with each other and also with the best results found in the literature for a set of known instances. These experiments showed that the proposed strategies provided good results with respect to quality of solutions well as the computational cost. In addition, it was possible to evaluate the viability of each employed chromosome representation and the contribution of the heuristics in the convergence process of GA.Nos últimos anos o Problema de Roteamento de Veículos (PRV) tem atraído cada vez mais a atenção de pesquisadores devido à grande dificuldade de solução e sua presença em várias situações do cotidiano. Em decorrência disso, tem havido um grande esforço para desenvolver algoritmos cada vez mais robustos, ágeis e flexíveis e que possam ser modelados com base no cenário que descreve o problema. O Problema de Roteamento de Veículos Capacitado (PRVC) é uma versão do PRV e consiste em encontrar um conjunto de rotas a serem seguidas por uma frota de veículos homogêneos, os quais devem atender a um conjunto de clientes. O objetivo é minimizar o custo total das rotas respeitando as seguintes restrições: i) as rotas devem iniciar e terminar no mesmo centro de distribuição; ii) cada cliente deve ser visitado uma única vez e sua demanda deve ser atendida integralmente por apenas um veículo e iii) a soma das demandas dos clientes incluídos em uma rota não pode exceder a capacidade do veículo. Problemas desta natureza podem ser classificados como NP-Hard, ou seja, possuem ordem de complexidade não polinomial e normalmente são resolvidos com uso de algoritmos heurísticos e meta-heurísticos. Neste trabalho investigou-se a otimização do PRVC usando Algoritmo Genético (AG) com representações cromossômicas e heurísticas alternativas. Para tanto, foram propostas três estratégias, cada uma delas empregando um modelo diferente de representação cromossômica para codificação da solução no AG. Além disso, foram empregadas as heurísticas de Gillett e Miller para gerar soluções que são incluídas na população inicial do AG e Subida/Descida de Encosta para refinamento das soluções, após um certo número de gerações sem melhoria. Nos experimentos realizados, os resultados obtidos pelas estratégias propostas foram comparados entre si e também com os melhores resultados encontrados na literatura para um conjunto de instâncias conhecidas. Pode-se constatar, a partir desses experimentos, que as estratégias apresentaram bons resultados tanto no que tange a qualidade das soluções quanto ao tempo computacional dispendido. Em adição, foi possível avaliar a viabilidade de cada uma das representações cromossômicas empregadas, além da contribuição das heurísticas no processo de convergência do ag.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2015-07-17T16:00:19Z No. of bitstreams: 1 Stanley Jefferson de Araujo Lima.pdf: 1500605 bytes, checksum: 2aec7d5c11c9781ce7f70eb2019c01f4 (MD5)Made available in DSpace on 2015-07-17T16:00:19Z (GMT). No. of bitstreams: 1 Stanley Jefferson de Araujo Lima.pdf: 1500605 bytes, checksum: 2aec7d5c11c9781ce7f70eb2019c01f4 (MD5) Previous issue date: 2015-01-27application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação de Mestrado e Doutorado em Engenharia de ProduçãoUNINOVEBrasilEngenhariaroteamento de veículos capacitadoalgoritmos genéticosrepresentação cromossômicaheurísticascapacitated vehicle routing problemgenetic algorithmschromosome representationheuristicsENGENHARIAS::ENGENHARIA DE PRODUCAOOtimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2551182063231974631600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALStanley Jefferson de Araujo Lima.pdfStanley Jefferson de Araujo Lima.pdfapplication/pdf1500605http://localhost:8080/tede/bitstream/tede/1124/2/Stanley+Jefferson+de+Araujo+Lima.pdf2aec7d5c11c9781ce7f70eb2019c01f4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/tede/1124/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/11242025-10-17 17:00:38.235oai:localhost:tede/1124Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2025-10-17T20:00:38Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false |
| dc.title.por.fl_str_mv |
Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas |
| title |
Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas |
| spellingShingle |
Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas Lima, Stanley Jefferson De Araujo roteamento de veículos capacitado algoritmos genéticos representação cromossômica heurísticas capacitated vehicle routing problem genetic algorithms chromosome representation heuristics ENGENHARIAS::ENGENHARIA DE PRODUCAO |
| title_short |
Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas |
| title_full |
Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas |
| title_fullStr |
Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas |
| title_full_unstemmed |
Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas |
| title_sort |
Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas |
| author |
Lima, Stanley Jefferson De Araujo |
| author_facet |
Lima, Stanley Jefferson De Araujo |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Araújo, Sidnei Alves de |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2542529753132844 |
| dc.contributor.referee1.fl_str_mv |
Schimit , Pedro Henrique Triguis |
| dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/9938713955885093 |
| dc.contributor.referee2.fl_str_mv |
Pereira, Fabio Henrique |
| dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3713755920970596 |
| dc.contributor.referee3.fl_str_mv |
Junqueira, Leonardo |
| dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/2179657609596194 |
| dc.contributor.referee4.fl_str_mv |
Silva Filho, Oscar Salviano |
| dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/9318920743205236 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8555096292361760 |
| dc.contributor.author.fl_str_mv |
Lima, Stanley Jefferson De Araujo |
| contributor_str_mv |
Araújo, Sidnei Alves de Schimit , Pedro Henrique Triguis Pereira, Fabio Henrique Junqueira, Leonardo Silva Filho, Oscar Salviano |
| dc.subject.por.fl_str_mv |
roteamento de veículos capacitado algoritmos genéticos representação cromossômica heurísticas |
| topic |
roteamento de veículos capacitado algoritmos genéticos representação cromossômica heurísticas capacitated vehicle routing problem genetic algorithms chromosome representation heuristics ENGENHARIAS::ENGENHARIA DE PRODUCAO |
| dc.subject.eng.fl_str_mv |
capacitated vehicle routing problem genetic algorithms chromosome representation heuristics |
| dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA DE PRODUCAO |
| description |
In recent years, the Vehicle Routing Problem (VRP) has attracted an increasing attention from researchers due to the great difficulty of its solution and its presence in various practical situations. As consequence, there has been great effort to develop more robust, agile and flexible algorithms that can be modeled according to the scenario that describes the problem. The Capacitated Vehicle Routing Problem (CVRP) is a version of VRP and consists in determining a set of routes to be followed by a fleet of homogeneous vehicles, which must serve a set of customers. The objective is to minimize the total cost of the routes subject to the following restrictions: i) routes must start and end in the same distribution center; ii) each customer must be visited once and its demand must be met in full by only one vehicle and iii) the sum of customers' demands included in a route cannot exceed the vehicle capacity. The CVRP belongs to the class of NP-hard problems, that is, problems whose the solution usually requires non-polynomial complexity time algorithms and because of this are usually resolved with the use of heuristic and metaheuristics algorithms. In this work, it was investigated the optimization of CVRP using Genetic Algorithm (GA) with alternative chromosome representations and heuristics. To this end, three strategies, each one employing a different model of chromosome representation for encoding solution in AG were proposed. In addition, the heuristics of Gillett and Miller to generate solutions that are included in the initial population of GA and Hill-climbing for refinement of GA solutions, after a number of generations without improvement, were adopted. In the performed experiments, the results obtained by the proposed strategies were compared with each other and also with the best results found in the literature for a set of known instances. These experiments showed that the proposed strategies provided good results with respect to quality of solutions well as the computational cost. In addition, it was possible to evaluate the viability of each employed chromosome representation and the contribution of the heuristics in the convergence process of GA. |
| publishDate |
2015 |
| dc.date.accessioned.fl_str_mv |
2015-07-17T16:00:19Z |
| dc.date.issued.fl_str_mv |
2015-01-27 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
Lima, Stanley Jefferson De Araujo. Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas. 2015. 101 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo . |
| dc.identifier.uri.fl_str_mv |
http://bibliotecatede.uninove.br/handle/tede/1124 |
| identifier_str_mv |
Lima, Stanley Jefferson De Araujo. Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas. 2015. 101 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo . |
| url |
http://bibliotecatede.uninove.br/handle/tede/1124 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.cnpq.fl_str_mv |
2551182063231974631 |
| dc.relation.confidence.fl_str_mv |
600 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Nove de Julho |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação de Mestrado e Doutorado em Engenharia de Produção |
| dc.publisher.initials.fl_str_mv |
UNINOVE |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Engenharia |
| publisher.none.fl_str_mv |
Universidade Nove de Julho |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da Uninove instname:Universidade Nove de Julho (UNINOVE) instacron:UNINOVE |
| instname_str |
Universidade Nove de Julho (UNINOVE) |
| instacron_str |
UNINOVE |
| institution |
UNINOVE |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
| collection |
Biblioteca Digital de Teses e Dissertações da Uninove |
| bitstream.url.fl_str_mv |
http://localhost:8080/tede/bitstream/tede/1124/2/Stanley+Jefferson+de+Araujo+Lima.pdf http://localhost:8080/tede/bitstream/tede/1124/1/license.txt |
| bitstream.checksum.fl_str_mv |
2aec7d5c11c9781ce7f70eb2019c01f4 7b5ba3d2445355f386edab96125d42b7 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE) |
| repository.mail.fl_str_mv |
bibliotecatede@uninove.br||bibliotecatede@uninove.br |
| _version_ |
1857652247574347776 |