Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Lima, Stanley Jefferson De Araujo lattes
Orientador(a): Araújo, Sidnei Alves de lattes
Banca de defesa: Schimit , Pedro Henrique Triguis lattes, Pereira, Fabio Henrique lattes, Junqueira, Leonardo lattes, Silva Filho, Oscar Salviano lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Nove de Julho
Programa de Pós-Graduação: Programa de Pós-Graduação de Mestrado e Doutorado em Engenharia de Produção
Departamento: Engenharia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://bibliotecatede.uninove.br/handle/tede/1124
Resumo: In recent years, the Vehicle Routing Problem (VRP) has attracted an increasing attention from researchers due to the great difficulty of its solution and its presence in various practical situations. As consequence, there has been great effort to develop more robust, agile and flexible algorithms that can be modeled according to the scenario that describes the problem. The Capacitated Vehicle Routing Problem (CVRP) is a version of VRP and consists in determining a set of routes to be followed by a fleet of homogeneous vehicles, which must serve a set of customers. The objective is to minimize the total cost of the routes subject to the following restrictions: i) routes must start and end in the same distribution center; ii) each customer must be visited once and its demand must be met in full by only one vehicle and iii) the sum of customers' demands included in a route cannot exceed the vehicle capacity. The CVRP belongs to the class of NP-hard problems, that is, problems whose the solution usually requires non-polynomial complexity time algorithms and because of this are usually resolved with the use of heuristic and metaheuristics algorithms. In this work, it was investigated the optimization of CVRP using Genetic Algorithm (GA) with alternative chromosome representations and heuristics. To this end, three strategies, each one employing a different model of chromosome representation for encoding solution in AG were proposed. In addition, the heuristics of Gillett and Miller to generate solutions that are included in the initial population of GA and Hill-climbing for refinement of GA solutions, after a number of generations without improvement, were adopted. In the performed experiments, the results obtained by the proposed strategies were compared with each other and also with the best results found in the literature for a set of known instances. These experiments showed that the proposed strategies provided good results with respect to quality of solutions well as the computational cost. In addition, it was possible to evaluate the viability of each employed chromosome representation and the contribution of the heuristics in the convergence process of GA.
id NOVE_da513232f23ce7a1dd29ac9927c76f2e
oai_identifier_str oai:localhost:tede/1124
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Araújo, Sidnei Alves dehttp://lattes.cnpq.br/2542529753132844Schimit , Pedro Henrique Triguishttp://lattes.cnpq.br/9938713955885093Pereira, Fabio Henriquehttp://lattes.cnpq.br/3713755920970596Junqueira, Leonardohttp://lattes.cnpq.br/2179657609596194Silva Filho, Oscar Salvianohttp://lattes.cnpq.br/9318920743205236http://lattes.cnpq.br/8555096292361760Lima, Stanley Jefferson De Araujo2015-07-17T16:00:19Z2015-01-27Lima, Stanley Jefferson De Araujo. Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas. 2015. 101 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo .http://bibliotecatede.uninove.br/handle/tede/1124In recent years, the Vehicle Routing Problem (VRP) has attracted an increasing attention from researchers due to the great difficulty of its solution and its presence in various practical situations. As consequence, there has been great effort to develop more robust, agile and flexible algorithms that can be modeled according to the scenario that describes the problem. The Capacitated Vehicle Routing Problem (CVRP) is a version of VRP and consists in determining a set of routes to be followed by a fleet of homogeneous vehicles, which must serve a set of customers. The objective is to minimize the total cost of the routes subject to the following restrictions: i) routes must start and end in the same distribution center; ii) each customer must be visited once and its demand must be met in full by only one vehicle and iii) the sum of customers' demands included in a route cannot exceed the vehicle capacity. The CVRP belongs to the class of NP-hard problems, that is, problems whose the solution usually requires non-polynomial complexity time algorithms and because of this are usually resolved with the use of heuristic and metaheuristics algorithms. In this work, it was investigated the optimization of CVRP using Genetic Algorithm (GA) with alternative chromosome representations and heuristics. To this end, three strategies, each one employing a different model of chromosome representation for encoding solution in AG were proposed. In addition, the heuristics of Gillett and Miller to generate solutions that are included in the initial population of GA and Hill-climbing for refinement of GA solutions, after a number of generations without improvement, were adopted. In the performed experiments, the results obtained by the proposed strategies were compared with each other and also with the best results found in the literature for a set of known instances. These experiments showed that the proposed strategies provided good results with respect to quality of solutions well as the computational cost. In addition, it was possible to evaluate the viability of each employed chromosome representation and the contribution of the heuristics in the convergence process of GA.Nos últimos anos o Problema de Roteamento de Veículos (PRV) tem atraído cada vez mais a atenção de pesquisadores devido à grande dificuldade de solução e sua presença em várias situações do cotidiano. Em decorrência disso, tem havido um grande esforço para desenvolver algoritmos cada vez mais robustos, ágeis e flexíveis e que possam ser modelados com base no cenário que descreve o problema. O Problema de Roteamento de Veículos Capacitado (PRVC) é uma versão do PRV e consiste em encontrar um conjunto de rotas a serem seguidas por uma frota de veículos homogêneos, os quais devem atender a um conjunto de clientes. O objetivo é minimizar o custo total das rotas respeitando as seguintes restrições: i) as rotas devem iniciar e terminar no mesmo centro de distribuição; ii) cada cliente deve ser visitado uma única vez e sua demanda deve ser atendida integralmente por apenas um veículo e iii) a soma das demandas dos clientes incluídos em uma rota não pode exceder a capacidade do veículo. Problemas desta natureza podem ser classificados como NP-Hard, ou seja, possuem ordem de complexidade não polinomial e normalmente são resolvidos com uso de algoritmos heurísticos e meta-heurísticos. Neste trabalho investigou-se a otimização do PRVC usando Algoritmo Genético (AG) com representações cromossômicas e heurísticas alternativas. Para tanto, foram propostas três estratégias, cada uma delas empregando um modelo diferente de representação cromossômica para codificação da solução no AG. Além disso, foram empregadas as heurísticas de Gillett e Miller para gerar soluções que são incluídas na população inicial do AG e Subida/Descida de Encosta para refinamento das soluções, após um certo número de gerações sem melhoria. Nos experimentos realizados, os resultados obtidos pelas estratégias propostas foram comparados entre si e também com os melhores resultados encontrados na literatura para um conjunto de instâncias conhecidas. Pode-se constatar, a partir desses experimentos, que as estratégias apresentaram bons resultados tanto no que tange a qualidade das soluções quanto ao tempo computacional dispendido. Em adição, foi possível avaliar a viabilidade de cada uma das representações cromossômicas empregadas, além da contribuição das heurísticas no processo de convergência do ag.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2015-07-17T16:00:19Z No. of bitstreams: 1 Stanley Jefferson de Araujo Lima.pdf: 1500605 bytes, checksum: 2aec7d5c11c9781ce7f70eb2019c01f4 (MD5)Made available in DSpace on 2015-07-17T16:00:19Z (GMT). No. of bitstreams: 1 Stanley Jefferson de Araujo Lima.pdf: 1500605 bytes, checksum: 2aec7d5c11c9781ce7f70eb2019c01f4 (MD5) Previous issue date: 2015-01-27application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação de Mestrado e Doutorado em Engenharia de ProduçãoUNINOVEBrasilEngenhariaroteamento de veículos capacitadoalgoritmos genéticosrepresentação cromossômicaheurísticascapacitated vehicle routing problemgenetic algorithmschromosome representationheuristicsENGENHARIAS::ENGENHARIA DE PRODUCAOOtimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2551182063231974631600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALStanley Jefferson de Araujo Lima.pdfStanley Jefferson de Araujo Lima.pdfapplication/pdf1500605http://localhost:8080/tede/bitstream/tede/1124/2/Stanley+Jefferson+de+Araujo+Lima.pdf2aec7d5c11c9781ce7f70eb2019c01f4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/tede/1124/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51tede/11242025-10-17 17:00:38.235oai:localhost:tede/1124Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2025-10-17T20:00:38Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
title Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
spellingShingle Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
Lima, Stanley Jefferson De Araujo
roteamento de veículos capacitado
algoritmos genéticos
representação cromossômica
heurísticas
capacitated vehicle routing problem
genetic algorithms
chromosome representation
heuristics
ENGENHARIAS::ENGENHARIA DE PRODUCAO
title_short Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
title_full Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
title_fullStr Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
title_full_unstemmed Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
title_sort Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas
author Lima, Stanley Jefferson De Araujo
author_facet Lima, Stanley Jefferson De Araujo
author_role author
dc.contributor.advisor1.fl_str_mv Araújo, Sidnei Alves de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2542529753132844
dc.contributor.referee1.fl_str_mv Schimit , Pedro Henrique Triguis
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/9938713955885093
dc.contributor.referee2.fl_str_mv Pereira, Fabio Henrique
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3713755920970596
dc.contributor.referee3.fl_str_mv Junqueira, Leonardo
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/2179657609596194
dc.contributor.referee4.fl_str_mv Silva Filho, Oscar Salviano
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/9318920743205236
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8555096292361760
dc.contributor.author.fl_str_mv Lima, Stanley Jefferson De Araujo
contributor_str_mv Araújo, Sidnei Alves de
Schimit , Pedro Henrique Triguis
Pereira, Fabio Henrique
Junqueira, Leonardo
Silva Filho, Oscar Salviano
dc.subject.por.fl_str_mv roteamento de veículos capacitado
algoritmos genéticos
representação cromossômica
heurísticas
topic roteamento de veículos capacitado
algoritmos genéticos
representação cromossômica
heurísticas
capacitated vehicle routing problem
genetic algorithms
chromosome representation
heuristics
ENGENHARIAS::ENGENHARIA DE PRODUCAO
dc.subject.eng.fl_str_mv capacitated vehicle routing problem
genetic algorithms
chromosome representation
heuristics
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE PRODUCAO
description In recent years, the Vehicle Routing Problem (VRP) has attracted an increasing attention from researchers due to the great difficulty of its solution and its presence in various practical situations. As consequence, there has been great effort to develop more robust, agile and flexible algorithms that can be modeled according to the scenario that describes the problem. The Capacitated Vehicle Routing Problem (CVRP) is a version of VRP and consists in determining a set of routes to be followed by a fleet of homogeneous vehicles, which must serve a set of customers. The objective is to minimize the total cost of the routes subject to the following restrictions: i) routes must start and end in the same distribution center; ii) each customer must be visited once and its demand must be met in full by only one vehicle and iii) the sum of customers' demands included in a route cannot exceed the vehicle capacity. The CVRP belongs to the class of NP-hard problems, that is, problems whose the solution usually requires non-polynomial complexity time algorithms and because of this are usually resolved with the use of heuristic and metaheuristics algorithms. In this work, it was investigated the optimization of CVRP using Genetic Algorithm (GA) with alternative chromosome representations and heuristics. To this end, three strategies, each one employing a different model of chromosome representation for encoding solution in AG were proposed. In addition, the heuristics of Gillett and Miller to generate solutions that are included in the initial population of GA and Hill-climbing for refinement of GA solutions, after a number of generations without improvement, were adopted. In the performed experiments, the results obtained by the proposed strategies were compared with each other and also with the best results found in the literature for a set of known instances. These experiments showed that the proposed strategies provided good results with respect to quality of solutions well as the computational cost. In addition, it was possible to evaluate the viability of each employed chromosome representation and the contribution of the heuristics in the convergence process of GA.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-07-17T16:00:19Z
dc.date.issued.fl_str_mv 2015-01-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Lima, Stanley Jefferson De Araujo. Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas. 2015. 101 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo .
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/1124
identifier_str_mv Lima, Stanley Jefferson De Araujo. Otimização do problema de roteamento de veículos capacitado usando algoritmos genéticos com heurísticas e representações cromossômicas alternativas. 2015. 101 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo .
url http://bibliotecatede.uninove.br/handle/tede/1124
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 2551182063231974631
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação de Mestrado e Doutorado em Engenharia de Produção
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/1124/2/Stanley+Jefferson+de+Araujo+Lima.pdf
http://localhost:8080/tede/bitstream/tede/1124/1/license.txt
bitstream.checksum.fl_str_mv 2aec7d5c11c9781ce7f70eb2019c01f4
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1857652247574347776