Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica
| Ano de defesa: | 2010 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de São Carlos
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
| Departamento: |
Não Informado pela instituição
|
| País: |
BR
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/5867 |
Resumo: | In this work, we study the result of well-posedness for the cubic wave equation u + u3 = 0 in R3, due to H. Bahouri e J.-Y. Chemin, where the Cauchy data is in the Homogeneous Sobolev space ̇H3/4(R3) × ̇H−1/4(R3). The proof relies on nonlinear in- terpolation method, the Bony's decomposition and the logarithmic Strichartz estimates, as formulated in the Littlewood-Paley Theory |
| id |
SCAR_db429d356a17f90f749f0e8e7a06c110 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/5867 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
|
| spelling |
Pinto, Aldo VieiraSantos Filho, José Ruidival Soares doshttp://lattes.cnpq.br/6112529384454347http://lattes.cnpq.br/9018128582398550b8998379-753d-4a8a-92ac-fd9ea25fdce02016-06-02T20:28:25Z2010-08-232016-06-02T20:28:25Z2010-07-08PINTO, Aldo Vieira. Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica. 2010. 91 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2010.https://repositorio.ufscar.br/handle/20.500.14289/5867In this work, we study the result of well-posedness for the cubic wave equation u + u3 = 0 in R3, due to H. Bahouri e J.-Y. Chemin, where the Cauchy data is in the Homogeneous Sobolev space ̇H3/4(R3) × ̇H−1/4(R3). The proof relies on nonlinear in- terpolation method, the Bony's decomposition and the logarithmic Strichartz estimates, as formulated in the Littlewood-Paley TheoryNeste trabalho, estudamos o resultado de boa-colocação para a equação da onda cúbica u +uR3 = 0 em R3, devido a H. Bahouri e J.-Y. Chemin, no qual os dados de Cauchy estão no espaço de Sobolev homogêneo H3/4 (R3) H-1/4 (R3). A prova utiliza um método de interpolação não-linear, decomposição de Bony e desigualdade logarítmica de Strichartz, todas formuladas na Teoria de Littlewood-Paley.Financiadora de Estudos e Projetosapplication/pdfporUniversidade Federal de São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarBRAnáliseEquações diferenciais parciaisEquação da ondaEstimativas de StrichartzBony, DecomposiçãoEquação da Onda CúbicaTeoria de Littlewood-PaleyDecomposição de BonyEstimativas de StrichartzCubic Wave EquationLittlewood-Paley TheoryStrichartz estimatesCIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAISTeoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbicainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-1-1d2c496dd-e55a-43f0-8abb-c7c9e7f46983info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARTEXT3166.pdf.txt3166.pdf.txtExtracted texttext/plain114663https://repositorio.ufscar.br/bitstreams/35f301a6-66af-4db5-885d-4f58dc0c31a5/download57e4fb1f5d281550b07ab1b209fcb455MD53falseAnonymousREADORIGINAL3166.pdfapplication/pdf902639https://repositorio.ufscar.br/bitstreams/1e3f278b-6214-4860-ab4e-1bad731b4b96/downloadea05b6d6e2b4c76c819c3abd8b7bd595MD51trueAnonymousREADTHUMBNAIL3166.pdf.jpg3166.pdf.jpgIM Thumbnailimage/jpeg6789https://repositorio.ufscar.br/bitstreams/ec5c48c5-0613-4678-b4af-c31dd41f7e52/download8f71cd8e0c1fadf9d7208d02b5e553baMD52falseAnonymousREAD20.500.14289/58672025-02-05 21:58:40.777open.accessoai:repositorio.ufscar.br:20.500.14289/5867https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T00:58:40Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.por.fl_str_mv |
Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica |
| title |
Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica |
| spellingShingle |
Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica Pinto, Aldo Vieira Análise Equações diferenciais parciais Equação da onda Estimativas de Strichartz Bony, Decomposição Equação da Onda Cúbica Teoria de Littlewood-Paley Decomposição de Bony Estimativas de Strichartz Cubic Wave Equation Littlewood-Paley Theory Strichartz estimates CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
| title_short |
Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica |
| title_full |
Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica |
| title_fullStr |
Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica |
| title_full_unstemmed |
Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica |
| title_sort |
Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica |
| author |
Pinto, Aldo Vieira |
| author_facet |
Pinto, Aldo Vieira |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/9018128582398550 |
| dc.contributor.author.fl_str_mv |
Pinto, Aldo Vieira |
| dc.contributor.advisor1.fl_str_mv |
Santos Filho, José Ruidival Soares dos |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6112529384454347 |
| dc.contributor.authorID.fl_str_mv |
b8998379-753d-4a8a-92ac-fd9ea25fdce0 |
| contributor_str_mv |
Santos Filho, José Ruidival Soares dos |
| dc.subject.por.fl_str_mv |
Análise Equações diferenciais parciais Equação da onda Estimativas de Strichartz Bony, Decomposição Equação da Onda Cúbica Teoria de Littlewood-Paley Decomposição de Bony Estimativas de Strichartz |
| topic |
Análise Equações diferenciais parciais Equação da onda Estimativas de Strichartz Bony, Decomposição Equação da Onda Cúbica Teoria de Littlewood-Paley Decomposição de Bony Estimativas de Strichartz Cubic Wave Equation Littlewood-Paley Theory Strichartz estimates CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
| dc.subject.eng.fl_str_mv |
Cubic Wave Equation Littlewood-Paley Theory Strichartz estimates |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
| description |
In this work, we study the result of well-posedness for the cubic wave equation u + u3 = 0 in R3, due to H. Bahouri e J.-Y. Chemin, where the Cauchy data is in the Homogeneous Sobolev space ̇H3/4(R3) × ̇H−1/4(R3). The proof relies on nonlinear in- terpolation method, the Bony's decomposition and the logarithmic Strichartz estimates, as formulated in the Littlewood-Paley Theory |
| publishDate |
2010 |
| dc.date.available.fl_str_mv |
2010-08-23 2016-06-02T20:28:25Z |
| dc.date.issued.fl_str_mv |
2010-07-08 |
| dc.date.accessioned.fl_str_mv |
2016-06-02T20:28:25Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
PINTO, Aldo Vieira. Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica. 2010. 91 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2010. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/5867 |
| identifier_str_mv |
PINTO, Aldo Vieira. Teoria de Littlewood-Paley e o problema de Cauchy para a equação da onda cúbica. 2010. 91 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2010. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/5867 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
-1 -1 |
| dc.relation.authority.fl_str_mv |
d2c496dd-e55a-43f0-8abb-c7c9e7f46983 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| dc.publisher.country.fl_str_mv |
BR |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/35f301a6-66af-4db5-885d-4f58dc0c31a5/download https://repositorio.ufscar.br/bitstreams/1e3f278b-6214-4860-ab4e-1bad731b4b96/download https://repositorio.ufscar.br/bitstreams/ec5c48c5-0613-4678-b4af-c31dd41f7e52/download |
| bitstream.checksum.fl_str_mv |
57e4fb1f5d281550b07ab1b209fcb455 ea05b6d6e2b4c76c819c3abd8b7bd595 8f71cd8e0c1fadf9d7208d02b5e553ba |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1851688905944858624 |