Longitudinal geospatial frequency estimation under adaptive local differentially private model

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Duarte Neto, Eduardo Rodrigues
Orientador(a): Machado, Javam de Castro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufc.br/handle/riufc/82741
Resumo: The collection of geospatial data under Local Differential Privacy (LDP) enables valuable spatial analytics without compromising user privacy. However, existing LDP mechanisms rely on static spatial discretizations, such as uniform grids or fixed-depth quadtrees, that are ill-suited to the dynamic and non-uniform nature of real-world mobility data. These limitations are further amplified in longitudinal settings, where users report their locations repeatedly over time. In this work, we propose ALOQ (Adaptive Longitudinal Quadtree), a novel data collection model for continuous, privacy-preserving location frequency estimation under LDP. ALOQ introduces a dynamic quadtree-based spatial representation that evolves in response to noisy user density distributions, improving estimation accuracy while preserving strong privacy guarantees. The model includes a Quadtree Adaptation Window (QAW) to detect significant temporal changes, a similarity-aware privacy budget allocation mechanism, and a bounded refinement strategy that ensures the cumulative privacy loss remains under control. We provide a theoretical analysis of ALOQ’s privacy guarantees and evaluate its performance on both synthetic and real-world datasets. Our results show that ALOQ consistently outperforms state-of-the-art LDP baselines in terms of utility and budget efficiency, particularly in scenarios with skewed spatial distributions and evolving mobility patterns.
id UFC-7_31479aa3a2d8bc48cc2f78b189909b1d
oai_identifier_str oai:repositorio.ufc.br:riufc/82741
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Duarte Neto, Eduardo RodriguesMachado, Javam de Castro2025-09-26T19:30:28Z2025-09-26T19:30:28Z2025DUARTE NETO, Eduardo Rodrigues. Longitudinal geospatial frequency estimation under adaptive local differentially private model. 2025. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.http://repositorio.ufc.br/handle/riufc/82741The collection of geospatial data under Local Differential Privacy (LDP) enables valuable spatial analytics without compromising user privacy. However, existing LDP mechanisms rely on static spatial discretizations, such as uniform grids or fixed-depth quadtrees, that are ill-suited to the dynamic and non-uniform nature of real-world mobility data. These limitations are further amplified in longitudinal settings, where users report their locations repeatedly over time. In this work, we propose ALOQ (Adaptive Longitudinal Quadtree), a novel data collection model for continuous, privacy-preserving location frequency estimation under LDP. ALOQ introduces a dynamic quadtree-based spatial representation that evolves in response to noisy user density distributions, improving estimation accuracy while preserving strong privacy guarantees. The model includes a Quadtree Adaptation Window (QAW) to detect significant temporal changes, a similarity-aware privacy budget allocation mechanism, and a bounded refinement strategy that ensures the cumulative privacy loss remains under control. We provide a theoretical analysis of ALOQ’s privacy guarantees and evaluate its performance on both synthetic and real-world datasets. Our results show that ALOQ consistently outperforms state-of-the-art LDP baselines in terms of utility and budget efficiency, particularly in scenarios with skewed spatial distributions and evolving mobility patterns.A coleta de dados geoespaciais sob o modelo de Privacidade Diferencial Local (LDP) viabiliza análises espaciais valiosas sem comprometer a privacidade dos usuários. No entanto, os mecanismos LDP existentes baseiam-se em discretizações espaciais estáticas, como grades uniformes ou quadtrees de profundidade fixa, que são inadequadas para a natureza dinâmica e não uniforme dos dados de mobilidade do mundo real. Essas limitações se agravam em cenários longitudinais, nos quais os usuários reportam suas localizações repetidamente ao longo do tempo. Neste trabalho, propomos o ALOQ (Adaptive Longitudinal Quadtree), um novo framework para estimativa contínua de frequência de localização com preservação de privacidade sob LDP. O ALOQ introduz uma representação espacial dinâmica baseada em quadtree que evolui em resposta a distribuições de densidade de usuários ruidosas, melhorando a acurácia das estimativas sem comprometer as garantias de privacidade. O framework inclui uma Janela de Adaptação da Quadtree (GAW) para detectar mudanças temporais significativas, um mecanismo de alocação de orçamento de privacidade baseado em similaridade e uma estratégia de refinamento com limites que assegura controle sobre o acúmulo de perda de privacidade ao longo do tempo. Apresentamos uma análise teórica das garantias de privacidade do ALOQ e avaliamos seu desempenho em conjuntos de dados sintéticos e reais. Os resultados demonstram que o ALOQ supera consistentemente os principais métodos LDP da literatura em termos de utilidade e eficiência no uso do orçamento de privacidade, especialmente em cenários com distribuições espaciais assimétricas e padrões de mobilidade dinâmicos.Longitudinal geospatial frequency estimation under adaptive local differentially private modelLongitudinal geospatial frequency estimation under adaptive local differentially private modelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPrivacidade diferencial localPrivacidade diferencialDados de localizaçãoParticionamento espacialLocal differential privacyDifferential privacyLocation dataSpatial partitionCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFC0000-0003-1222-563Xhttps://lattes.cnpq.br/9088370074451475http://lattes.cnpq.br/9884980518986225LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/82741/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2025_tese_erduarteneto.pdf2025_tese_erduarteneto.pdfapplication/pdf2435210http://repositorio.ufc.br/bitstream/riufc/82741/3/2025_tese_erduarteneto.pdf90939b7b4623b343605c9afde75f92fbMD53riufc/827412025-09-30 14:43:10.076oai:repositorio.ufc.br:riufc/82741Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-09-30T17:43:10Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Longitudinal geospatial frequency estimation under adaptive local differentially private model
dc.title.en.pt_BR.fl_str_mv Longitudinal geospatial frequency estimation under adaptive local differentially private model
title Longitudinal geospatial frequency estimation under adaptive local differentially private model
spellingShingle Longitudinal geospatial frequency estimation under adaptive local differentially private model
Duarte Neto, Eduardo Rodrigues
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Privacidade diferencial local
Privacidade diferencial
Dados de localização
Particionamento espacial
Local differential privacy
Differential privacy
Location data
Spatial partition
title_short Longitudinal geospatial frequency estimation under adaptive local differentially private model
title_full Longitudinal geospatial frequency estimation under adaptive local differentially private model
title_fullStr Longitudinal geospatial frequency estimation under adaptive local differentially private model
title_full_unstemmed Longitudinal geospatial frequency estimation under adaptive local differentially private model
title_sort Longitudinal geospatial frequency estimation under adaptive local differentially private model
author Duarte Neto, Eduardo Rodrigues
author_facet Duarte Neto, Eduardo Rodrigues
author_role author
dc.contributor.author.fl_str_mv Duarte Neto, Eduardo Rodrigues
dc.contributor.advisor1.fl_str_mv Machado, Javam de Castro
contributor_str_mv Machado, Javam de Castro
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Privacidade diferencial local
Privacidade diferencial
Dados de localização
Particionamento espacial
Local differential privacy
Differential privacy
Location data
Spatial partition
dc.subject.ptbr.pt_BR.fl_str_mv Privacidade diferencial local
Privacidade diferencial
Dados de localização
Particionamento espacial
dc.subject.en.pt_BR.fl_str_mv Local differential privacy
Differential privacy
Location data
Spatial partition
description The collection of geospatial data under Local Differential Privacy (LDP) enables valuable spatial analytics without compromising user privacy. However, existing LDP mechanisms rely on static spatial discretizations, such as uniform grids or fixed-depth quadtrees, that are ill-suited to the dynamic and non-uniform nature of real-world mobility data. These limitations are further amplified in longitudinal settings, where users report their locations repeatedly over time. In this work, we propose ALOQ (Adaptive Longitudinal Quadtree), a novel data collection model for continuous, privacy-preserving location frequency estimation under LDP. ALOQ introduces a dynamic quadtree-based spatial representation that evolves in response to noisy user density distributions, improving estimation accuracy while preserving strong privacy guarantees. The model includes a Quadtree Adaptation Window (QAW) to detect significant temporal changes, a similarity-aware privacy budget allocation mechanism, and a bounded refinement strategy that ensures the cumulative privacy loss remains under control. We provide a theoretical analysis of ALOQ’s privacy guarantees and evaluate its performance on both synthetic and real-world datasets. Our results show that ALOQ consistently outperforms state-of-the-art LDP baselines in terms of utility and budget efficiency, particularly in scenarios with skewed spatial distributions and evolving mobility patterns.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-09-26T19:30:28Z
dc.date.available.fl_str_mv 2025-09-26T19:30:28Z
dc.date.issued.fl_str_mv 2025
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DUARTE NETO, Eduardo Rodrigues. Longitudinal geospatial frequency estimation under adaptive local differentially private model. 2025. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/82741
identifier_str_mv DUARTE NETO, Eduardo Rodrigues. Longitudinal geospatial frequency estimation under adaptive local differentially private model. 2025. 113 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2025.
url http://repositorio.ufc.br/handle/riufc/82741
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/82741/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/82741/3/2025_tese_erduarteneto.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
90939b7b4623b343605c9afde75f92fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792964030431232