Regularidade Hölder em equações elípticas na forma divergente
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.repositorio.ufc.br/handle/riufc/64692 |
Resumo: | Elliptic partial differential equations are essential objects of study for modern Mathematics, particularly in the area of analysis, but also in Physics. We initially aim to study the weak solutions of such equations. For this we will define such solutions and obtain a minimum condition for them to be studied. We will analyze, before delving into the solutions of such equations, the Hölder continuity of functions from the local growth of its integral. Then we will obtain the John-Nirenberg Inequality through the study of Diadic Cubes together with the Calderon-Zygmund Lemma. Having finished the study of the bounded mean oscillation functions, we will in fact turn to the solutions of the homogeneous equations, thus passing through the Caccioppoli Inequality and also approaching the Harmonic Functions. Using these estimates we will arrive at Hölder continuity of the solutions and their gradient, assuming the coefficients of the equations are at least continuous. Then we will approach more general coefficients, and for that we will initially obtain the local limitation of the subsolutions of the equation by the approach of De Giorgi. Having done that, we will analyze both the subsolutions and the supersolutions of the equation in the homogeneous case, passing through Density and Oscillation Theorems, and finally arriving at De Giorgi’s Theorem, from which it is also possible to obtain the Hölder continuity of the solutions. Finally, we will approach the Weak Harnack Inequality and enunciate some consequences of it, among which the Moser’s Harnack Inequality, the Hölder continuity of Solutions, and the Liouville Theorem. |
| id |
UFC-7_93f4180bf15716719b9b2ea25b6a11f8 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/64692 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Saboya, Pedro MedeirosRicarte, Gleydson Chaves2022-03-30T12:04:43Z2022-03-30T12:04:43Z2022-02-10SABOYA, Pedro Medeiros. Regularidade Hölder em equações elípticas na forma divergente. 2022. 88 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/64692Elliptic partial differential equations are essential objects of study for modern Mathematics, particularly in the area of analysis, but also in Physics. We initially aim to study the weak solutions of such equations. For this we will define such solutions and obtain a minimum condition for them to be studied. We will analyze, before delving into the solutions of such equations, the Hölder continuity of functions from the local growth of its integral. Then we will obtain the John-Nirenberg Inequality through the study of Diadic Cubes together with the Calderon-Zygmund Lemma. Having finished the study of the bounded mean oscillation functions, we will in fact turn to the solutions of the homogeneous equations, thus passing through the Caccioppoli Inequality and also approaching the Harmonic Functions. Using these estimates we will arrive at Hölder continuity of the solutions and their gradient, assuming the coefficients of the equations are at least continuous. Then we will approach more general coefficients, and for that we will initially obtain the local limitation of the subsolutions of the equation by the approach of De Giorgi. Having done that, we will analyze both the subsolutions and the supersolutions of the equation in the homogeneous case, passing through Density and Oscillation Theorems, and finally arriving at De Giorgi’s Theorem, from which it is also possible to obtain the Hölder continuity of the solutions. Finally, we will approach the Weak Harnack Inequality and enunciate some consequences of it, among which the Moser’s Harnack Inequality, the Hölder continuity of Solutions, and the Liouville Theorem.As equações diferenciais parciais elípticas são objetos de estudo primordiais para a Matemática moderna, em particular na área da análise, mas também na Física. Visando estudar inicialmente as soluções fracas de tais equações, definiremos tais soluções e obteremos uma condição mínima para elas serem estudadas. Analizaremos, antes de nos aprofundar nas soluções de tais equações, a Hölder continuidade de funções a partir do crescimento local de sua integral. Em seguida obteremos a Desigualdade de John-Nirenberg por meio do estudo dos cubos diádicos juntamente com o Lema de Calderón-Zygmund. Terminado o estudo das funções de oscilação média limitada, voltaremos-nos de fato para as soluções das equações homogêneas, passando assim pela Desigualdade de Caccioppoli e abordando também as funções harmônicas. Utilizando tais estimativas chegaremos a Hölder continuidade das soluções e do gradiente delas, supondo os coeficientes das equações pelo menos contínuos. Em seguida abordaremos coeficientes mais gerais, e para isso obteremos inicialmente a limitação local das subsoluções da equação pela abordagem de De Giorgi. Feito isso, analisaremos tanto as subsoluções quanto as supersoluções da equação no caso homogêneo, passando assim por Teoremas de Densidade e de Oscilação, e chegando finalmente ao Teorema de De Giorgi, a partir do qual também é possivel obter a Hölder continuidade das soluções. Por fim abordaremos a Desigualdade de Harnack fraca e enunciaremos algumas consequências dela, dentre as quais a Desigualdade de Harnack devido a Moser, a Hölder continuidade das soluções, e o Teorema de Liouville.Equações diferenciais parciais elípticasHolder continuidadeTeorema de De GiorgiDesigualdade de John-NirenbergDesigualdade de Harnack devido à MoserTeorema de LiouvilleElliptic partial differential equationsContinuity HolderDe Giorgi's TheoremJohn-Nirenberg inequalityHarnack inequality due to MoserLiouville's TheoremRegularidade Hölder em equações elípticas na forma divergenteHölder regularity in elliptic equations in divergent forminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2022_dis_pmsaboya.pdf2022_dis_pmsaboya.pdfapplication/pdf642455http://repositorio.ufc.br/bitstream/riufc/64692/3/2022_dis_pmsaboya.pdff8ffe651ce0be73a2380fe835d8a4ff7MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82158http://repositorio.ufc.br/bitstream/riufc/64692/2/license.txte63c6ed4faa81e8b90d2fac75971a7d6MD52riufc/646922022-11-28 10:53:05.159oai:repositorio.ufc.br:riufc/64692TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIA0KDQpBbyBjb25jb3JkYXIgY29tIGVzdGEgbGljZW7Dp2EsIHZvY8OqKHMpIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgb2JyYSBhcXVpIGRlc2NyaXRhIGNvbmNlZGUobSkgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uIFZvY8OqIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCBjb252ZXJ0ZXIgbyBhcnF1aXZvIGRlcG9zaXRhZG8gYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4gVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGVzdGUgZGVww7NzaXRvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUvb3UgcHJlc2VydmHDp8Ojby4gVm9jw6ogZGVjbGFyYSBxdWUgYSBhcHJlc2VudGHDp8OjbyBkbyBzZXUgdHJhYmFsaG8gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6oocykgcG9kZShtKSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhKG0pIHF1ZSBvIGVudmlvIMOpIGRlIHNldSBjb25oZWNpbWVudG8gZSBuw6NvIGluZnJpbmdlIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG91dHJhIHBlc3NvYSBvdSBpbnN0aXR1acOnw6NvLiBDYXNvIG8gZG9jdW1lbnRvIGEgc2VyIGRlcG9zaXRhZG8gY29udGVuaGEgbWF0ZXJpYWwgcGFyYSBvIHF1YWwgdm9jw6oocykgbsOjbyBkZXTDqW0gYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGRlIGF1dG9yYWlzLCB2b2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zLCBlc3TDo28gZGV2aWRhbWVudGUgaWRlbnRpZmljYWRvcyBlIHJlY29uaGVjaWRvcyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZGEgYXByZXNlbnRhw6fDo28uDQogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gDQpPIHJlcG9zaXTDs3JpbyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyBzZXUocykgbm9tZShzKSBjb21vIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkbyBkaXJlaXRvIGRlIGF1dG9yKGVzKSBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGUgZGVjbGFyYSBxdWUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQy4NCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-11-28T13:53:05Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Regularidade Hölder em equações elípticas na forma divergente |
| dc.title.en.pt_BR.fl_str_mv |
Hölder regularity in elliptic equations in divergent form |
| title |
Regularidade Hölder em equações elípticas na forma divergente |
| spellingShingle |
Regularidade Hölder em equações elípticas na forma divergente Saboya, Pedro Medeiros Equações diferenciais parciais elípticas Holder continuidade Teorema de De Giorgi Desigualdade de John-Nirenberg Desigualdade de Harnack devido à Moser Teorema de Liouville Elliptic partial differential equations Continuity Holder De Giorgi's Theorem John-Nirenberg inequality Harnack inequality due to Moser Liouville's Theorem |
| title_short |
Regularidade Hölder em equações elípticas na forma divergente |
| title_full |
Regularidade Hölder em equações elípticas na forma divergente |
| title_fullStr |
Regularidade Hölder em equações elípticas na forma divergente |
| title_full_unstemmed |
Regularidade Hölder em equações elípticas na forma divergente |
| title_sort |
Regularidade Hölder em equações elípticas na forma divergente |
| author |
Saboya, Pedro Medeiros |
| author_facet |
Saboya, Pedro Medeiros |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Saboya, Pedro Medeiros |
| dc.contributor.advisor1.fl_str_mv |
Ricarte, Gleydson Chaves |
| contributor_str_mv |
Ricarte, Gleydson Chaves |
| dc.subject.por.fl_str_mv |
Equações diferenciais parciais elípticas Holder continuidade Teorema de De Giorgi Desigualdade de John-Nirenberg Desigualdade de Harnack devido à Moser Teorema de Liouville Elliptic partial differential equations Continuity Holder De Giorgi's Theorem John-Nirenberg inequality Harnack inequality due to Moser Liouville's Theorem |
| topic |
Equações diferenciais parciais elípticas Holder continuidade Teorema de De Giorgi Desigualdade de John-Nirenberg Desigualdade de Harnack devido à Moser Teorema de Liouville Elliptic partial differential equations Continuity Holder De Giorgi's Theorem John-Nirenberg inequality Harnack inequality due to Moser Liouville's Theorem |
| description |
Elliptic partial differential equations are essential objects of study for modern Mathematics, particularly in the area of analysis, but also in Physics. We initially aim to study the weak solutions of such equations. For this we will define such solutions and obtain a minimum condition for them to be studied. We will analyze, before delving into the solutions of such equations, the Hölder continuity of functions from the local growth of its integral. Then we will obtain the John-Nirenberg Inequality through the study of Diadic Cubes together with the Calderon-Zygmund Lemma. Having finished the study of the bounded mean oscillation functions, we will in fact turn to the solutions of the homogeneous equations, thus passing through the Caccioppoli Inequality and also approaching the Harmonic Functions. Using these estimates we will arrive at Hölder continuity of the solutions and their gradient, assuming the coefficients of the equations are at least continuous. Then we will approach more general coefficients, and for that we will initially obtain the local limitation of the subsolutions of the equation by the approach of De Giorgi. Having done that, we will analyze both the subsolutions and the supersolutions of the equation in the homogeneous case, passing through Density and Oscillation Theorems, and finally arriving at De Giorgi’s Theorem, from which it is also possible to obtain the Hölder continuity of the solutions. Finally, we will approach the Weak Harnack Inequality and enunciate some consequences of it, among which the Moser’s Harnack Inequality, the Hölder continuity of Solutions, and the Liouville Theorem. |
| publishDate |
2022 |
| dc.date.accessioned.fl_str_mv |
2022-03-30T12:04:43Z |
| dc.date.available.fl_str_mv |
2022-03-30T12:04:43Z |
| dc.date.issued.fl_str_mv |
2022-02-10 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SABOYA, Pedro Medeiros. Regularidade Hölder em equações elípticas na forma divergente. 2022. 88 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/64692 |
| identifier_str_mv |
SABOYA, Pedro Medeiros. Regularidade Hölder em equações elípticas na forma divergente. 2022. 88 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022. |
| url |
http://www.repositorio.ufc.br/handle/riufc/64692 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/64692/3/2022_dis_pmsaboya.pdf http://repositorio.ufc.br/bitstream/riufc/64692/2/license.txt |
| bitstream.checksum.fl_str_mv |
f8ffe651ce0be73a2380fe835d8a4ff7 e63c6ed4faa81e8b90d2fac75971a7d6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847793161296936960 |