Exportação concluída — 

Regularidade Hölder em equações elípticas na forma divergente

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Saboya, Pedro Medeiros
Orientador(a): Ricarte, Gleydson Chaves
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/64692
Resumo: Elliptic partial differential equations are essential objects of study for modern Mathematics, particularly in the area of analysis, but also in Physics. We initially aim to study the weak solutions of such equations. For this we will define such solutions and obtain a minimum condition for them to be studied. We will analyze, before delving into the solutions of such equations, the Hölder continuity of functions from the local growth of its integral. Then we will obtain the John-Nirenberg Inequality through the study of Diadic Cubes together with the Calderon-Zygmund Lemma. Having finished the study of the bounded mean oscillation functions, we will in fact turn to the solutions of the homogeneous equations, thus passing through the Caccioppoli Inequality and also approaching the Harmonic Functions. Using these estimates we will arrive at Hölder continuity of the solutions and their gradient, assuming the coefficients of the equations are at least continuous. Then we will approach more general coefficients, and for that we will initially obtain the local limitation of the subsolutions of the equation by the approach of De Giorgi. Having done that, we will analyze both the subsolutions and the supersolutions of the equation in the homogeneous case, passing through Density and Oscillation Theorems, and finally arriving at De Giorgi’s Theorem, from which it is also possible to obtain the Hölder continuity of the solutions. Finally, we will approach the Weak Harnack Inequality and enunciate some consequences of it, among which the Moser’s Harnack Inequality, the Hölder continuity of Solutions, and the Liouville Theorem.
id UFC-7_93f4180bf15716719b9b2ea25b6a11f8
oai_identifier_str oai:repositorio.ufc.br:riufc/64692
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Saboya, Pedro MedeirosRicarte, Gleydson Chaves2022-03-30T12:04:43Z2022-03-30T12:04:43Z2022-02-10SABOYA, Pedro Medeiros. Regularidade Hölder em equações elípticas na forma divergente. 2022. 88 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022.http://www.repositorio.ufc.br/handle/riufc/64692Elliptic partial differential equations are essential objects of study for modern Mathematics, particularly in the area of analysis, but also in Physics. We initially aim to study the weak solutions of such equations. For this we will define such solutions and obtain a minimum condition for them to be studied. We will analyze, before delving into the solutions of such equations, the Hölder continuity of functions from the local growth of its integral. Then we will obtain the John-Nirenberg Inequality through the study of Diadic Cubes together with the Calderon-Zygmund Lemma. Having finished the study of the bounded mean oscillation functions, we will in fact turn to the solutions of the homogeneous equations, thus passing through the Caccioppoli Inequality and also approaching the Harmonic Functions. Using these estimates we will arrive at Hölder continuity of the solutions and their gradient, assuming the coefficients of the equations are at least continuous. Then we will approach more general coefficients, and for that we will initially obtain the local limitation of the subsolutions of the equation by the approach of De Giorgi. Having done that, we will analyze both the subsolutions and the supersolutions of the equation in the homogeneous case, passing through Density and Oscillation Theorems, and finally arriving at De Giorgi’s Theorem, from which it is also possible to obtain the Hölder continuity of the solutions. Finally, we will approach the Weak Harnack Inequality and enunciate some consequences of it, among which the Moser’s Harnack Inequality, the Hölder continuity of Solutions, and the Liouville Theorem.As equações diferenciais parciais elípticas são objetos de estudo primordiais para a Matemática moderna, em particular na área da análise, mas também na Física. Visando estudar inicialmente as soluções fracas de tais equações, definiremos tais soluções e obteremos uma condição mínima para elas serem estudadas. Analizaremos, antes de nos aprofundar nas soluções de tais equações, a Hölder continuidade de funções a partir do crescimento local de sua integral. Em seguida obteremos a Desigualdade de John-Nirenberg por meio do estudo dos cubos diádicos juntamente com o Lema de Calderón-Zygmund. Terminado o estudo das funções de oscilação média limitada, voltaremos-nos de fato para as soluções das equações homogêneas, passando assim pela Desigualdade de Caccioppoli e abordando também as funções harmônicas. Utilizando tais estimativas chegaremos a Hölder continuidade das soluções e do gradiente delas, supondo os coeficientes das equações pelo menos contínuos. Em seguida abordaremos coeficientes mais gerais, e para isso obteremos inicialmente a limitação local das subsoluções da equação pela abordagem de De Giorgi. Feito isso, analisaremos tanto as subsoluções quanto as supersoluções da equação no caso homogêneo, passando assim por Teoremas de Densidade e de Oscilação, e chegando finalmente ao Teorema de De Giorgi, a partir do qual também é possivel obter a Hölder continuidade das soluções. Por fim abordaremos a Desigualdade de Harnack fraca e enunciaremos algumas consequências dela, dentre as quais a Desigualdade de Harnack devido a Moser, a Hölder continuidade das soluções, e o Teorema de Liouville.Equações diferenciais parciais elípticasHolder continuidadeTeorema de De GiorgiDesigualdade de John-NirenbergDesigualdade de Harnack devido à MoserTeorema de LiouvilleElliptic partial differential equationsContinuity HolderDe Giorgi's TheoremJohn-Nirenberg inequalityHarnack inequality due to MoserLiouville's TheoremRegularidade Hölder em equações elípticas na forma divergenteHölder regularity in elliptic equations in divergent forminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2022_dis_pmsaboya.pdf2022_dis_pmsaboya.pdfapplication/pdf642455http://repositorio.ufc.br/bitstream/riufc/64692/3/2022_dis_pmsaboya.pdff8ffe651ce0be73a2380fe835d8a4ff7MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82158http://repositorio.ufc.br/bitstream/riufc/64692/2/license.txte63c6ed4faa81e8b90d2fac75971a7d6MD52riufc/646922022-11-28 10:53:05.159oai:repositorio.ufc.br:riufc/64692TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIA0KDQpBbyBjb25jb3JkYXIgY29tIGVzdGEgbGljZW7Dp2EsIHZvY8OqKHMpIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgb2JyYSBhcXVpIGRlc2NyaXRhIGNvbmNlZGUobSkgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uIFZvY8OqIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCBjb252ZXJ0ZXIgbyBhcnF1aXZvIGRlcG9zaXRhZG8gYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4gVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGVzdGUgZGVww7NzaXRvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUvb3UgcHJlc2VydmHDp8Ojby4gVm9jw6ogZGVjbGFyYSBxdWUgYSBhcHJlc2VudGHDp8OjbyBkbyBzZXUgdHJhYmFsaG8gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6oocykgcG9kZShtKSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhKG0pIHF1ZSBvIGVudmlvIMOpIGRlIHNldSBjb25oZWNpbWVudG8gZSBuw6NvIGluZnJpbmdlIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG91dHJhIHBlc3NvYSBvdSBpbnN0aXR1acOnw6NvLiBDYXNvIG8gZG9jdW1lbnRvIGEgc2VyIGRlcG9zaXRhZG8gY29udGVuaGEgbWF0ZXJpYWwgcGFyYSBvIHF1YWwgdm9jw6oocykgbsOjbyBkZXTDqW0gYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGRlIGF1dG9yYWlzLCB2b2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zLCBlc3TDo28gZGV2aWRhbWVudGUgaWRlbnRpZmljYWRvcyBlIHJlY29uaGVjaWRvcyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZGEgYXByZXNlbnRhw6fDo28uDQogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gDQpPIHJlcG9zaXTDs3JpbyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyBzZXUocykgbm9tZShzKSBjb21vIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkbyBkaXJlaXRvIGRlIGF1dG9yKGVzKSBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGUgZGVjbGFyYSBxdWUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQy4NCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-11-28T13:53:05Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Regularidade Hölder em equações elípticas na forma divergente
dc.title.en.pt_BR.fl_str_mv Hölder regularity in elliptic equations in divergent form
title Regularidade Hölder em equações elípticas na forma divergente
spellingShingle Regularidade Hölder em equações elípticas na forma divergente
Saboya, Pedro Medeiros
Equações diferenciais parciais elípticas
Holder continuidade
Teorema de De Giorgi
Desigualdade de John-Nirenberg
Desigualdade de Harnack devido à Moser
Teorema de Liouville
Elliptic partial differential equations
Continuity Holder
De Giorgi's Theorem
John-Nirenberg inequality
Harnack inequality due to Moser
Liouville's Theorem
title_short Regularidade Hölder em equações elípticas na forma divergente
title_full Regularidade Hölder em equações elípticas na forma divergente
title_fullStr Regularidade Hölder em equações elípticas na forma divergente
title_full_unstemmed Regularidade Hölder em equações elípticas na forma divergente
title_sort Regularidade Hölder em equações elípticas na forma divergente
author Saboya, Pedro Medeiros
author_facet Saboya, Pedro Medeiros
author_role author
dc.contributor.author.fl_str_mv Saboya, Pedro Medeiros
dc.contributor.advisor1.fl_str_mv Ricarte, Gleydson Chaves
contributor_str_mv Ricarte, Gleydson Chaves
dc.subject.por.fl_str_mv Equações diferenciais parciais elípticas
Holder continuidade
Teorema de De Giorgi
Desigualdade de John-Nirenberg
Desigualdade de Harnack devido à Moser
Teorema de Liouville
Elliptic partial differential equations
Continuity Holder
De Giorgi's Theorem
John-Nirenberg inequality
Harnack inequality due to Moser
Liouville's Theorem
topic Equações diferenciais parciais elípticas
Holder continuidade
Teorema de De Giorgi
Desigualdade de John-Nirenberg
Desigualdade de Harnack devido à Moser
Teorema de Liouville
Elliptic partial differential equations
Continuity Holder
De Giorgi's Theorem
John-Nirenberg inequality
Harnack inequality due to Moser
Liouville's Theorem
description Elliptic partial differential equations are essential objects of study for modern Mathematics, particularly in the area of analysis, but also in Physics. We initially aim to study the weak solutions of such equations. For this we will define such solutions and obtain a minimum condition for them to be studied. We will analyze, before delving into the solutions of such equations, the Hölder continuity of functions from the local growth of its integral. Then we will obtain the John-Nirenberg Inequality through the study of Diadic Cubes together with the Calderon-Zygmund Lemma. Having finished the study of the bounded mean oscillation functions, we will in fact turn to the solutions of the homogeneous equations, thus passing through the Caccioppoli Inequality and also approaching the Harmonic Functions. Using these estimates we will arrive at Hölder continuity of the solutions and their gradient, assuming the coefficients of the equations are at least continuous. Then we will approach more general coefficients, and for that we will initially obtain the local limitation of the subsolutions of the equation by the approach of De Giorgi. Having done that, we will analyze both the subsolutions and the supersolutions of the equation in the homogeneous case, passing through Density and Oscillation Theorems, and finally arriving at De Giorgi’s Theorem, from which it is also possible to obtain the Hölder continuity of the solutions. Finally, we will approach the Weak Harnack Inequality and enunciate some consequences of it, among which the Moser’s Harnack Inequality, the Hölder continuity of Solutions, and the Liouville Theorem.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-03-30T12:04:43Z
dc.date.available.fl_str_mv 2022-03-30T12:04:43Z
dc.date.issued.fl_str_mv 2022-02-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SABOYA, Pedro Medeiros. Regularidade Hölder em equações elípticas na forma divergente. 2022. 88 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/64692
identifier_str_mv SABOYA, Pedro Medeiros. Regularidade Hölder em equações elípticas na forma divergente. 2022. 88 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022.
url http://www.repositorio.ufc.br/handle/riufc/64692
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/64692/3/2022_dis_pmsaboya.pdf
http://repositorio.ufc.br/bitstream/riufc/64692/2/license.txt
bitstream.checksum.fl_str_mv f8ffe651ce0be73a2380fe835d8a4ff7
e63c6ed4faa81e8b90d2fac75971a7d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793161296936960