Uma versão Lipschitz do teorema de Sard

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Rocha, André Gadelha
Orientador(a): Sampaio, José Edson
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/63315
Resumo: The aim of this work is to study a Lipschitz version of Sard’s Theorem. In relation to the Sard Theorem in its classic version, we will change the hypothesis of being C1 for subanalytic and locally Lipschitz. Since we are not necessarily working with differentiable functions, the critical points will be replaced by Clarke’s critical points. Finally, we will give examples which show that the theorem is not true, if we omit the locally Lipschitz hypothesis or the subanalytic hypothesis.
id UFC-7_c9bd4e6c92161b03f11494a5d4efcda3
oai_identifier_str oai:repositorio.ufc.br:riufc/63315
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Rocha, André GadelhaSampaio, José Edson2022-01-04T13:57:20Z2022-01-04T13:57:20Z2021-04-09ROCHA, André Gadelha. Uma versão Lipschitz do teorema de Sard. 2021. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/63315The aim of this work is to study a Lipschitz version of Sard’s Theorem. In relation to the Sard Theorem in its classic version, we will change the hypothesis of being C1 for subanalytic and locally Lipschitz. Since we are not necessarily working with differentiable functions, the critical points will be replaced by Clarke’s critical points. Finally, we will give examples which show that the theorem is not true, if we omit the locally Lipschitz hypothesis or the subanalytic hypothesis.O objetivo desse trabalho é estudar uma versão Lipschitz do Teorema de Sard. Em relação ao Teorema de Sard em sua versão clássica, trocaremos a hipótese de ser C1 por subanalítica e localmente Lipschitz. Como não estamos necessariamente trabalhando com funções diferenciáveis, os pontos críticos serão substituídos por pontos críticos de Clarke. Para finalizar, daremos exemplos que mostram que o teorema é falso, se omitimos a hipótese de ser localmente Lipschitz ou de ser subanalítica.Conjuntos subanalíticosAnálise convexaTeorema de Sard LipschitzDerivada de ClarkeSubanalytic setsConvex analysisSard Lipschitz's theoremClarke's derivativeUma versão Lipschitz do teorema de SardA Lipschitz version of Sard's theoreminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/63315/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2021_dis_agrocha.pdf2021_dis_agrocha.pdfDissertação de André Gadelha Rochaapplication/pdf589544http://repositorio.ufc.br/bitstream/riufc/63315/5/2021_dis_agrocha.pdf655a8ea70050c209c002aafb441b9222MD55riufc/633152022-01-10 17:45:21.468oai:repositorio.ufc.br:riufc/63315Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-01-10T20:45:21Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Uma versão Lipschitz do teorema de Sard
dc.title.en.pt_BR.fl_str_mv A Lipschitz version of Sard's theorem
title Uma versão Lipschitz do teorema de Sard
spellingShingle Uma versão Lipschitz do teorema de Sard
Rocha, André Gadelha
Conjuntos subanalíticos
Análise convexa
Teorema de Sard Lipschitz
Derivada de Clarke
Subanalytic sets
Convex analysis
Sard Lipschitz's theorem
Clarke's derivative
title_short Uma versão Lipschitz do teorema de Sard
title_full Uma versão Lipschitz do teorema de Sard
title_fullStr Uma versão Lipschitz do teorema de Sard
title_full_unstemmed Uma versão Lipschitz do teorema de Sard
title_sort Uma versão Lipschitz do teorema de Sard
author Rocha, André Gadelha
author_facet Rocha, André Gadelha
author_role author
dc.contributor.author.fl_str_mv Rocha, André Gadelha
dc.contributor.advisor1.fl_str_mv Sampaio, José Edson
contributor_str_mv Sampaio, José Edson
dc.subject.por.fl_str_mv Conjuntos subanalíticos
Análise convexa
Teorema de Sard Lipschitz
Derivada de Clarke
Subanalytic sets
Convex analysis
Sard Lipschitz's theorem
Clarke's derivative
topic Conjuntos subanalíticos
Análise convexa
Teorema de Sard Lipschitz
Derivada de Clarke
Subanalytic sets
Convex analysis
Sard Lipschitz's theorem
Clarke's derivative
description The aim of this work is to study a Lipschitz version of Sard’s Theorem. In relation to the Sard Theorem in its classic version, we will change the hypothesis of being C1 for subanalytic and locally Lipschitz. Since we are not necessarily working with differentiable functions, the critical points will be replaced by Clarke’s critical points. Finally, we will give examples which show that the theorem is not true, if we omit the locally Lipschitz hypothesis or the subanalytic hypothesis.
publishDate 2021
dc.date.issued.fl_str_mv 2021-04-09
dc.date.accessioned.fl_str_mv 2022-01-04T13:57:20Z
dc.date.available.fl_str_mv 2022-01-04T13:57:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA, André Gadelha. Uma versão Lipschitz do teorema de Sard. 2021. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/63315
identifier_str_mv ROCHA, André Gadelha. Uma versão Lipschitz do teorema de Sard. 2021. 49 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/63315
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/63315/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/63315/5/2021_dis_agrocha.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
655a8ea70050c209c002aafb441b9222
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847793122406301696