Evaluating machine learning methodologies for multi-domain learning in image classification
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pelotas
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Computação
|
| Departamento: |
Centro de Desenvolvimento Tecnológico
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | http://guaiaca.ufpel.edu.br/handle/prefix/8442 |
Resumo: | When training machine learning models, it is usually desired that the model learns to execute a specific task. This is commonly achieved by exposing this agent to data related to the task that should be learned. It is also expected that the model is going to be evaluated or used in real world applications receiving as input data samples that are similar to the ones used during training, like images taken from similar devices, therefore having similar features, which we call data domains or data sources. However, there are some cases in which we expect a model to properly perform a task in multiple different domains at the same time, being able to classify images from high definition pictures of objects as well as drawings of the same objects, for example. We propose and evaluate two novel techniques to train a single model to perform well on multiple domains at the same time, for a single task. One of the proposed techniques, we call Loss Sum, was able to achieve good performance when evaluated on different domains, both to domains already seen on training (multi-domain learning) and never seen before domains (domain-generalization). |
| id |
UFPL_b02b0d1e73b509a0975f2517aee32fbb |
|---|---|
| oai_identifier_str |
oai:guaiaca.ufpel.edu.br:prefix/8442 |
| network_acronym_str |
UFPL |
| network_name_str |
Repositório Institucional da UFPel - Guaiaca |
| repository_id_str |
|
| spelling |
2022-05-20T14:24:45Z2022-05-20T14:24:45Z2022-04-06BENDER, Ihan Belmonte. Evaluating Machine Learning Methodologies for MultiDomain Learning in Image Classification . Advisor: Ricardo Matsumura de Araújo. 2022. 53 f. Dissertation (Masters in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2022.http://guaiaca.ufpel.edu.br/handle/prefix/8442When training machine learning models, it is usually desired that the model learns to execute a specific task. This is commonly achieved by exposing this agent to data related to the task that should be learned. It is also expected that the model is going to be evaluated or used in real world applications receiving as input data samples that are similar to the ones used during training, like images taken from similar devices, therefore having similar features, which we call data domains or data sources. However, there are some cases in which we expect a model to properly perform a task in multiple different domains at the same time, being able to classify images from high definition pictures of objects as well as drawings of the same objects, for example. We propose and evaluate two novel techniques to train a single model to perform well on multiple domains at the same time, for a single task. One of the proposed techniques, we call Loss Sum, was able to achieve good performance when evaluated on different domains, both to domains already seen on training (multi-domain learning) and never seen before domains (domain-generalization).Quando se treina um modelo utilizando técnicas de aprendizado de máquina, é comum que se deseje que este modelo aprenda a executar uma tarefa especifica. Normalmente isso é alcançado ao expor o modelo, ou agente, a dados relacionados à tarefa que deveria aprender. Também se espera que o modelo seja avaliado ou utilizado em aplicações recebendo como entrada exemplos de dados que sejam similiares aos dados utilizados durante o treinamento, como imagens obtidas com a utilização de dispositivos similares ou iguais, gerando dados com features semelhantes. A estes dados com características próximas damos o nome de domínio ou fonte. Apesar de normalmente trabalharmos com apenas um domínio no aprendizado de máquina, existem alguns casos onde aprender a realizar a tarefa em mais de um domínio ao mesmo tempo é desejável, como criar um modelo capaz de classificar corretamente imagens tanto em fotos de objetos reais em alta definição quanto em desenhos feitos a mão, por exemplo. Nos propomos e avaliamos dois novos métodos de treinamento de modelos únicos que sejam capazes de ter boa performance em multiplos domínios ao mesmo tempo, para uma mesma tarefa. Uma das técnicas propostas, que chamamos de Soma dos Erros ou Loss Sum, foi capaz de alcançar bons resultados quando avaliada em diferentes domínios, tanto os vistos durante o treinamento (aprendizado de múltiplos domínios) quanto os apresentados apenas em etapa de avaliação (generalização de domínios).Sem bolsaporUniversidade Federal de PelotasPrograma de Pós-Graduação em ComputaçãoUFPelBrasilCentro de Desenvolvimento TecnológicoCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOComputaçãoMachine learningMulti-domain learningComputer visionArtificial intelligenceAprendizado de máquinaAprendizado de múltiplos domíniosVisão computacionalInteligência artificialEvaluating machine learning methodologies for multi-domain learning in image classificationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAraújo, Ricardo Matsumura deBender, Ihan Belmonteinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPELTEXTDissertacao_Ihan_Belmonte_Bender.pdf.txtDissertacao_Ihan_Belmonte_Bender.pdf.txtExtracted texttext/plain90459http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/6/Dissertacao_Ihan_Belmonte_Bender.pdf.txt1c578d52efacc5963c7553b4b27c32b6MD56open accessTHUMBNAILDissertacao_Ihan_Belmonte_Bender.pdf.jpgDissertacao_Ihan_Belmonte_Bender.pdf.jpgGenerated Thumbnailimage/jpeg1241http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/7/Dissertacao_Ihan_Belmonte_Bender.pdf.jpg48afa36d3c29200900ce5be156d65695MD57open accessORIGINALDissertacao_Ihan_Belmonte_Bender.pdfDissertacao_Ihan_Belmonte_Bender.pdfapplication/pdf2160541http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/1/Dissertacao_Ihan_Belmonte_Bender.pdf74bb1fcb9aa69a1cd64ff47734eefd80MD51open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/2/license_url924993ce0b3ba389f79f32a1b2735415MD52open accesslicense_textlicense_texttext/html; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/5/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD55open accessprefix/84422023-07-13 05:31:12.322open accessoai:guaiaca.ufpel.edu.br:prefix/8442TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2023-07-13T08:31:12Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false |
| dc.title.pt_BR.fl_str_mv |
Evaluating machine learning methodologies for multi-domain learning in image classification |
| title |
Evaluating machine learning methodologies for multi-domain learning in image classification |
| spellingShingle |
Evaluating machine learning methodologies for multi-domain learning in image classification Bender, Ihan Belmonte CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Computação Machine learning Multi-domain learning Computer vision Artificial intelligence Aprendizado de máquina Aprendizado de múltiplos domínios Visão computacional Inteligência artificial |
| title_short |
Evaluating machine learning methodologies for multi-domain learning in image classification |
| title_full |
Evaluating machine learning methodologies for multi-domain learning in image classification |
| title_fullStr |
Evaluating machine learning methodologies for multi-domain learning in image classification |
| title_full_unstemmed |
Evaluating machine learning methodologies for multi-domain learning in image classification |
| title_sort |
Evaluating machine learning methodologies for multi-domain learning in image classification |
| author |
Bender, Ihan Belmonte |
| author_facet |
Bender, Ihan Belmonte |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Araújo, Ricardo Matsumura de |
| dc.contributor.author.fl_str_mv |
Bender, Ihan Belmonte |
| contributor_str_mv |
Araújo, Ricardo Matsumura de |
| dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Computação Machine learning Multi-domain learning Computer vision Artificial intelligence Aprendizado de máquina Aprendizado de múltiplos domínios Visão computacional Inteligência artificial |
| dc.subject.por.fl_str_mv |
Computação Machine learning Multi-domain learning Computer vision Artificial intelligence Aprendizado de máquina Aprendizado de múltiplos domínios Visão computacional Inteligência artificial |
| description |
When training machine learning models, it is usually desired that the model learns to execute a specific task. This is commonly achieved by exposing this agent to data related to the task that should be learned. It is also expected that the model is going to be evaluated or used in real world applications receiving as input data samples that are similar to the ones used during training, like images taken from similar devices, therefore having similar features, which we call data domains or data sources. However, there are some cases in which we expect a model to properly perform a task in multiple different domains at the same time, being able to classify images from high definition pictures of objects as well as drawings of the same objects, for example. We propose and evaluate two novel techniques to train a single model to perform well on multiple domains at the same time, for a single task. One of the proposed techniques, we call Loss Sum, was able to achieve good performance when evaluated on different domains, both to domains already seen on training (multi-domain learning) and never seen before domains (domain-generalization). |
| publishDate |
2022 |
| dc.date.accessioned.fl_str_mv |
2022-05-20T14:24:45Z |
| dc.date.available.fl_str_mv |
2022-05-20T14:24:45Z |
| dc.date.issued.fl_str_mv |
2022-04-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
BENDER, Ihan Belmonte. Evaluating Machine Learning Methodologies for MultiDomain Learning in Image Classification . Advisor: Ricardo Matsumura de Araújo. 2022. 53 f. Dissertation (Masters in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2022. |
| dc.identifier.uri.fl_str_mv |
http://guaiaca.ufpel.edu.br/handle/prefix/8442 |
| identifier_str_mv |
BENDER, Ihan Belmonte. Evaluating Machine Learning Methodologies for MultiDomain Learning in Image Classification . Advisor: Ricardo Matsumura de Araújo. 2022. 53 f. Dissertation (Masters in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2022. |
| url |
http://guaiaca.ufpel.edu.br/handle/prefix/8442 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pelotas |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Computação |
| dc.publisher.initials.fl_str_mv |
UFPel |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Centro de Desenvolvimento Tecnológico |
| publisher.none.fl_str_mv |
Universidade Federal de Pelotas |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPel - Guaiaca instname:Universidade Federal de Pelotas (UFPEL) instacron:UFPEL |
| instname_str |
Universidade Federal de Pelotas (UFPEL) |
| instacron_str |
UFPEL |
| institution |
UFPEL |
| reponame_str |
Repositório Institucional da UFPel - Guaiaca |
| collection |
Repositório Institucional da UFPel - Guaiaca |
| bitstream.url.fl_str_mv |
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/6/Dissertacao_Ihan_Belmonte_Bender.pdf.txt http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/7/Dissertacao_Ihan_Belmonte_Bender.pdf.jpg http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/1/Dissertacao_Ihan_Belmonte_Bender.pdf http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/2/license_url http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/3/license_text http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/4/license_rdf http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/5/license.txt |
| bitstream.checksum.fl_str_mv |
1c578d52efacc5963c7553b4b27c32b6 48afa36d3c29200900ce5be156d65695 74bb1fcb9aa69a1cd64ff47734eefd80 924993ce0b3ba389f79f32a1b2735415 d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 43cd690d6a359e86c1fe3d5b7cba0c9b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL) |
| repository.mail.fl_str_mv |
rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br |
| _version_ |
1856426199377510400 |