Exportação concluída — 

Evaluating machine learning methodologies for multi-domain learning in image classification

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Bender, Ihan Belmonte
Orientador(a): Araújo, Ricardo Matsumura de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Centro de Desenvolvimento Tecnológico
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/handle/prefix/8442
Resumo: When training machine learning models, it is usually desired that the model learns to execute a specific task. This is commonly achieved by exposing this agent to data related to the task that should be learned. It is also expected that the model is going to be evaluated or used in real world applications receiving as input data samples that are similar to the ones used during training, like images taken from similar devices, therefore having similar features, which we call data domains or data sources. However, there are some cases in which we expect a model to properly perform a task in multiple different domains at the same time, being able to classify images from high definition pictures of objects as well as drawings of the same objects, for example. We propose and evaluate two novel techniques to train a single model to perform well on multiple domains at the same time, for a single task. One of the proposed techniques, we call Loss Sum, was able to achieve good performance when evaluated on different domains, both to domains already seen on training (multi-domain learning) and never seen before domains (domain-generalization).
id UFPL_b02b0d1e73b509a0975f2517aee32fbb
oai_identifier_str oai:guaiaca.ufpel.edu.br:prefix/8442
network_acronym_str UFPL
network_name_str Repositório Institucional da UFPel - Guaiaca
repository_id_str
spelling 2022-05-20T14:24:45Z2022-05-20T14:24:45Z2022-04-06BENDER, Ihan Belmonte. Evaluating Machine Learning Methodologies for MultiDomain Learning in Image Classification . Advisor: Ricardo Matsumura de Araújo. 2022. 53 f. Dissertation (Masters in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2022.http://guaiaca.ufpel.edu.br/handle/prefix/8442When training machine learning models, it is usually desired that the model learns to execute a specific task. This is commonly achieved by exposing this agent to data related to the task that should be learned. It is also expected that the model is going to be evaluated or used in real world applications receiving as input data samples that are similar to the ones used during training, like images taken from similar devices, therefore having similar features, which we call data domains or data sources. However, there are some cases in which we expect a model to properly perform a task in multiple different domains at the same time, being able to classify images from high definition pictures of objects as well as drawings of the same objects, for example. We propose and evaluate two novel techniques to train a single model to perform well on multiple domains at the same time, for a single task. One of the proposed techniques, we call Loss Sum, was able to achieve good performance when evaluated on different domains, both to domains already seen on training (multi-domain learning) and never seen before domains (domain-generalization).Quando se treina um modelo utilizando técnicas de aprendizado de máquina, é comum que se deseje que este modelo aprenda a executar uma tarefa especifica. Normalmente isso é alcançado ao expor o modelo, ou agente, a dados relacionados à tarefa que deveria aprender. Também se espera que o modelo seja avaliado ou utilizado em aplicações recebendo como entrada exemplos de dados que sejam similiares aos dados utilizados durante o treinamento, como imagens obtidas com a utilização de dispositivos similares ou iguais, gerando dados com features semelhantes. A estes dados com características próximas damos o nome de domínio ou fonte. Apesar de normalmente trabalharmos com apenas um domínio no aprendizado de máquina, existem alguns casos onde aprender a realizar a tarefa em mais de um domínio ao mesmo tempo é desejável, como criar um modelo capaz de classificar corretamente imagens tanto em fotos de objetos reais em alta definição quanto em desenhos feitos a mão, por exemplo. Nos propomos e avaliamos dois novos métodos de treinamento de modelos únicos que sejam capazes de ter boa performance em multiplos domínios ao mesmo tempo, para uma mesma tarefa. Uma das técnicas propostas, que chamamos de Soma dos Erros ou Loss Sum, foi capaz de alcançar bons resultados quando avaliada em diferentes domínios, tanto os vistos durante o treinamento (aprendizado de múltiplos domínios) quanto os apresentados apenas em etapa de avaliação (generalização de domínios).Sem bolsaporUniversidade Federal de PelotasPrograma de Pós-Graduação em ComputaçãoUFPelBrasilCentro de Desenvolvimento TecnológicoCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOComputaçãoMachine learningMulti-domain learningComputer visionArtificial intelligenceAprendizado de máquinaAprendizado de múltiplos domíniosVisão computacionalInteligência artificialEvaluating machine learning methodologies for multi-domain learning in image classificationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAraújo, Ricardo Matsumura deBender, Ihan Belmonteinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPELTEXTDissertacao_Ihan_Belmonte_Bender.pdf.txtDissertacao_Ihan_Belmonte_Bender.pdf.txtExtracted texttext/plain90459http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/6/Dissertacao_Ihan_Belmonte_Bender.pdf.txt1c578d52efacc5963c7553b4b27c32b6MD56open accessTHUMBNAILDissertacao_Ihan_Belmonte_Bender.pdf.jpgDissertacao_Ihan_Belmonte_Bender.pdf.jpgGenerated Thumbnailimage/jpeg1241http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/7/Dissertacao_Ihan_Belmonte_Bender.pdf.jpg48afa36d3c29200900ce5be156d65695MD57open accessORIGINALDissertacao_Ihan_Belmonte_Bender.pdfDissertacao_Ihan_Belmonte_Bender.pdfapplication/pdf2160541http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/1/Dissertacao_Ihan_Belmonte_Bender.pdf74bb1fcb9aa69a1cd64ff47734eefd80MD51open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/2/license_url924993ce0b3ba389f79f32a1b2735415MD52open accesslicense_textlicense_texttext/html; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/5/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD55open accessprefix/84422023-07-13 05:31:12.322open accessoai:guaiaca.ufpel.edu.br:prefix/8442TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2023-07-13T08:31:12Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false
dc.title.pt_BR.fl_str_mv Evaluating machine learning methodologies for multi-domain learning in image classification
title Evaluating machine learning methodologies for multi-domain learning in image classification
spellingShingle Evaluating machine learning methodologies for multi-domain learning in image classification
Bender, Ihan Belmonte
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação
Machine learning
Multi-domain learning
Computer vision
Artificial intelligence
Aprendizado de máquina
Aprendizado de múltiplos domínios
Visão computacional
Inteligência artificial
title_short Evaluating machine learning methodologies for multi-domain learning in image classification
title_full Evaluating machine learning methodologies for multi-domain learning in image classification
title_fullStr Evaluating machine learning methodologies for multi-domain learning in image classification
title_full_unstemmed Evaluating machine learning methodologies for multi-domain learning in image classification
title_sort Evaluating machine learning methodologies for multi-domain learning in image classification
author Bender, Ihan Belmonte
author_facet Bender, Ihan Belmonte
author_role author
dc.contributor.advisor1.fl_str_mv Araújo, Ricardo Matsumura de
dc.contributor.author.fl_str_mv Bender, Ihan Belmonte
contributor_str_mv Araújo, Ricardo Matsumura de
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação
Machine learning
Multi-domain learning
Computer vision
Artificial intelligence
Aprendizado de máquina
Aprendizado de múltiplos domínios
Visão computacional
Inteligência artificial
dc.subject.por.fl_str_mv Computação
Machine learning
Multi-domain learning
Computer vision
Artificial intelligence
Aprendizado de máquina
Aprendizado de múltiplos domínios
Visão computacional
Inteligência artificial
description When training machine learning models, it is usually desired that the model learns to execute a specific task. This is commonly achieved by exposing this agent to data related to the task that should be learned. It is also expected that the model is going to be evaluated or used in real world applications receiving as input data samples that are similar to the ones used during training, like images taken from similar devices, therefore having similar features, which we call data domains or data sources. However, there are some cases in which we expect a model to properly perform a task in multiple different domains at the same time, being able to classify images from high definition pictures of objects as well as drawings of the same objects, for example. We propose and evaluate two novel techniques to train a single model to perform well on multiple domains at the same time, for a single task. One of the proposed techniques, we call Loss Sum, was able to achieve good performance when evaluated on different domains, both to domains already seen on training (multi-domain learning) and never seen before domains (domain-generalization).
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-05-20T14:24:45Z
dc.date.available.fl_str_mv 2022-05-20T14:24:45Z
dc.date.issued.fl_str_mv 2022-04-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BENDER, Ihan Belmonte. Evaluating Machine Learning Methodologies for MultiDomain Learning in Image Classification . Advisor: Ricardo Matsumura de Araújo. 2022. 53 f. Dissertation (Masters in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2022.
dc.identifier.uri.fl_str_mv http://guaiaca.ufpel.edu.br/handle/prefix/8442
identifier_str_mv BENDER, Ihan Belmonte. Evaluating Machine Learning Methodologies for MultiDomain Learning in Image Classification . Advisor: Ricardo Matsumura de Araújo. 2022. 53 f. Dissertation (Masters in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2022.
url http://guaiaca.ufpel.edu.br/handle/prefix/8442
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pelotas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Computação
dc.publisher.initials.fl_str_mv UFPel
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Desenvolvimento Tecnológico
publisher.none.fl_str_mv Universidade Federal de Pelotas
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPel - Guaiaca
instname:Universidade Federal de Pelotas (UFPEL)
instacron:UFPEL
instname_str Universidade Federal de Pelotas (UFPEL)
instacron_str UFPEL
institution UFPEL
reponame_str Repositório Institucional da UFPel - Guaiaca
collection Repositório Institucional da UFPel - Guaiaca
bitstream.url.fl_str_mv http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/6/Dissertacao_Ihan_Belmonte_Bender.pdf.txt
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/7/Dissertacao_Ihan_Belmonte_Bender.pdf.jpg
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/1/Dissertacao_Ihan_Belmonte_Bender.pdf
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/2/license_url
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/3/license_text
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/4/license_rdf
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/8442/5/license.txt
bitstream.checksum.fl_str_mv 1c578d52efacc5963c7553b4b27c32b6
48afa36d3c29200900ce5be156d65695
74bb1fcb9aa69a1cd64ff47734eefd80
924993ce0b3ba389f79f32a1b2735415
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
43cd690d6a359e86c1fe3d5b7cba0c9b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)
repository.mail.fl_str_mv rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br
_version_ 1856426199377510400