Polinômios ortogonais e L-ortogonais associados a medidas relacionadas

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Campetti, Marcos Henrique [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/94202
Resumo: O objetivo deste trabalho é fazer um estudo das propriedades de duas sequências de polinômios, {Pϕ0 n }∞ n=0 e {Pϕ1 n }∞ n=0, ortogonais com relação, respectivamente, às medidas dϕ0 e dϕ1, relacionadas entre si, e das propriedades de duas sequências de polinômios L-ortogonais, {Bψ0 n }∞ n=0 e {Bψ1 n }∞ n=0, quando as medidas associadas, dψ0 e dψ1, est˜ao tamb´em relacionadas. Para os polinômios ortogonais, foram considerados dois casos: polinômios ortogonais associados a medidas simétricas relacionadas por dϕ1(x) = c 1 + qx2 dϕ0(x) e polinˆomios ortogonais associados a medidas relacionadas por (x − q) dϕ1(x) = c dϕ0(x). Como exemplo, os resultados foram aplicados no estudo de polinˆomios ortogonais de Sobolev associados a medidas simétricas como os de Gegenbauer e Hermite, e medidas não simétricas como as de Jacobi e Laguerre. Para os polinômios L-ortogonais, considerou-se o estudo de duas sequências de polinômios associados a medidas positivas fortes dψ0 e dψ1 relacionadas por (z − κ) dψ1(z) = c dψ0(z). Como consequência dessas propriedades, algoritmos para gerar qualquer um dos pares de coeficientes das relações de recorrência, {αψ0 n , βψ0 n } ou {αψ1 n , βψ1 n }, dado o outro, foram dados.
id UNSP_abbff1941c2890e4142c57cc9ff3d834
oai_identifier_str oai:repositorio.unesp.br:11449/94202
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Polinômios ortogonais e L-ortogonais associados a medidas relacionadasCálculoFunções hiperbolicasPolinomios ortogonaisOrthogonal polynomialsOrthogonal L-polynomialsSobolev orthogonal polynomialsRelated measuresO objetivo deste trabalho é fazer um estudo das propriedades de duas sequências de polinômios, {Pϕ0 n }∞ n=0 e {Pϕ1 n }∞ n=0, ortogonais com relação, respectivamente, às medidas dϕ0 e dϕ1, relacionadas entre si, e das propriedades de duas sequências de polinômios L-ortogonais, {Bψ0 n }∞ n=0 e {Bψ1 n }∞ n=0, quando as medidas associadas, dψ0 e dψ1, est˜ao tamb´em relacionadas. Para os polinômios ortogonais, foram considerados dois casos: polinômios ortogonais associados a medidas simétricas relacionadas por dϕ1(x) = c 1 + qx2 dϕ0(x) e polinˆomios ortogonais associados a medidas relacionadas por (x − q) dϕ1(x) = c dϕ0(x). Como exemplo, os resultados foram aplicados no estudo de polinˆomios ortogonais de Sobolev associados a medidas simétricas como os de Gegenbauer e Hermite, e medidas não simétricas como as de Jacobi e Laguerre. Para os polinômios L-ortogonais, considerou-se o estudo de duas sequências de polinômios associados a medidas positivas fortes dψ0 e dψ1 relacionadas por (z − κ) dψ1(z) = c dψ0(z). Como consequência dessas propriedades, algoritmos para gerar qualquer um dos pares de coeficientes das relações de recorrência, {αψ0 n , βψ0 n } ou {αψ1 n , βψ1 n }, dado o outro, foram dados.The main purpose of this work is to study some properties of two sequences of polynomials, {Pϕ0 n }∞ n=0 and {Pϕ1 n }∞ n=0, orthogonal, respectively, with respect to the related measures dϕ0 and dϕ1, and properties of two sequences of L-orthogonal polynomials, {Bψ0 n }∞ n=0 and {Bψ1 n }∞ n=0, when the associated measures, dψ0 and dψ1, are also related. For the orthogonal polynomials, we considered two cases: orthogonal polynomials associated with symmetric measures related to each other by dϕ1(x) = c 1 + qx2 dϕ0(x) and orthogonal polynomials associated with measures related by (x − q) dϕ1(x) = c dϕ0(x). As examples, the results are applied to obtain informations regarding Sobolev orthogonal polynomials associated with symmetric measures as Gegenbauer and Hermite measures, and non-symmetrical measures such as Jacobi and Laguerre measures. For the L-orthogonal polynomials, we considered the study of two sequences of polynomials associated with strong positive measures dψ0 and dψ1 and related to each other by (z −κ) dψ1(z) = c dψ0(z). As a consequence of these properties, algorithms to generate any pair of coefficients of the recurrence relations, {αψ0 n , βψ0 n } or {αψ1 n , βψ1 n }, given the other, were given.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Estadual Paulista (Unesp)Andrade, Eliana Xavier Linhares de [UNESP]Universidade Estadual Paulista (Unesp)Campetti, Marcos Henrique [UNESP]2014-06-11T19:26:55Z2014-06-11T19:26:55Z2011-01-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis115 f. : il. color.application/pdfCAMPETTI, Marcos Henrique. Polinômios ortogonais e L-ortogonais associados a medidas relacionadas. 2011. 115 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2011.http://hdl.handle.net/11449/94202000632604campetti_mh_me_sjrp.pdf33004153071P0Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-11-06T12:20:27Zoai:repositorio.unesp.br:11449/94202Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-06T12:20:27Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Polinômios ortogonais e L-ortogonais associados a medidas relacionadas
title Polinômios ortogonais e L-ortogonais associados a medidas relacionadas
spellingShingle Polinômios ortogonais e L-ortogonais associados a medidas relacionadas
Campetti, Marcos Henrique [UNESP]
Cálculo
Funções hiperbolicas
Polinomios ortogonais
Orthogonal polynomials
Orthogonal L-polynomials
Sobolev orthogonal polynomials
Related measures
title_short Polinômios ortogonais e L-ortogonais associados a medidas relacionadas
title_full Polinômios ortogonais e L-ortogonais associados a medidas relacionadas
title_fullStr Polinômios ortogonais e L-ortogonais associados a medidas relacionadas
title_full_unstemmed Polinômios ortogonais e L-ortogonais associados a medidas relacionadas
title_sort Polinômios ortogonais e L-ortogonais associados a medidas relacionadas
author Campetti, Marcos Henrique [UNESP]
author_facet Campetti, Marcos Henrique [UNESP]
author_role author
dc.contributor.none.fl_str_mv Andrade, Eliana Xavier Linhares de [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Campetti, Marcos Henrique [UNESP]
dc.subject.por.fl_str_mv Cálculo
Funções hiperbolicas
Polinomios ortogonais
Orthogonal polynomials
Orthogonal L-polynomials
Sobolev orthogonal polynomials
Related measures
topic Cálculo
Funções hiperbolicas
Polinomios ortogonais
Orthogonal polynomials
Orthogonal L-polynomials
Sobolev orthogonal polynomials
Related measures
description O objetivo deste trabalho é fazer um estudo das propriedades de duas sequências de polinômios, {Pϕ0 n }∞ n=0 e {Pϕ1 n }∞ n=0, ortogonais com relação, respectivamente, às medidas dϕ0 e dϕ1, relacionadas entre si, e das propriedades de duas sequências de polinômios L-ortogonais, {Bψ0 n }∞ n=0 e {Bψ1 n }∞ n=0, quando as medidas associadas, dψ0 e dψ1, est˜ao tamb´em relacionadas. Para os polinômios ortogonais, foram considerados dois casos: polinômios ortogonais associados a medidas simétricas relacionadas por dϕ1(x) = c 1 + qx2 dϕ0(x) e polinˆomios ortogonais associados a medidas relacionadas por (x − q) dϕ1(x) = c dϕ0(x). Como exemplo, os resultados foram aplicados no estudo de polinˆomios ortogonais de Sobolev associados a medidas simétricas como os de Gegenbauer e Hermite, e medidas não simétricas como as de Jacobi e Laguerre. Para os polinômios L-ortogonais, considerou-se o estudo de duas sequências de polinômios associados a medidas positivas fortes dψ0 e dψ1 relacionadas por (z − κ) dψ1(z) = c dψ0(z). Como consequência dessas propriedades, algoritmos para gerar qualquer um dos pares de coeficientes das relações de recorrência, {αψ0 n , βψ0 n } ou {αψ1 n , βψ1 n }, dado o outro, foram dados.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-20
2014-06-11T19:26:55Z
2014-06-11T19:26:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CAMPETTI, Marcos Henrique. Polinômios ortogonais e L-ortogonais associados a medidas relacionadas. 2011. 115 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2011.
http://hdl.handle.net/11449/94202
000632604
campetti_mh_me_sjrp.pdf
33004153071P0
identifier_str_mv CAMPETTI, Marcos Henrique. Polinômios ortogonais e L-ortogonais associados a medidas relacionadas. 2011. 115 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2011.
000632604
campetti_mh_me_sjrp.pdf
33004153071P0
url http://hdl.handle.net/11449/94202
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 115 f. : il. color.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854955132511322112