Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/18/18153/tde-14052025-142659/ |
Resumo: | Freezing of Gait (FoG) is one of the most debilitating motor symptoms of Parkinsons Disease (PD), characterized by the sudden and temporary inability to start or continue walking. Detecting and monitoring these episodes is fundamental to improving diagnoses and intervention strategies. This paper proposes an approach based on spectral analysis of acceleration signals to identify patterns associated with FoG. The methodology employs the extraction of relative power characteristics using Welchs method, as well as the definition of a metric called Frequency Spectral Bands Ratio (FSBR). The data analyzed came from the Daphnet Freezing of Gait Dataset, which contains records from inertial sensors positioned on the ankle, thigh and trunk of patients with PD. The Random Forest algorithm was used to classify the events, evaluating different sensor positions and time window lengths (2s, 3s and 4s). The results indicate that longer windows improve FoG detection, with the trunk sensor showing the highest recall rate (0.918) for a 4-second window, making it the ideal configuration for minimizing false negatives. Confusion matrix analysis shows that the proposed approach captures critical motor transitions with high precision, making it a promising alternative for applications in continuous monitoring and real-time interventions. Additionally, the investigation of the most relevant spectral bands revealed that low-frequency oscillations in the Z-axis (1.5-2.0 Hz) and high-frequency components in the X-axis (20.0-30.0 Hz) play a key role in distinguishing between FoG episodes and normal gait. These findings reinforce the potential of spectral analysis in characterizing gait dynamics in PD patients, contributing to the development of more accurate and individualized detection systems. |
| id |
USP_0fd0de77276db3f4ee580c4057c828f5 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-14052025-142659 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approachDetecção de congelamento da marcha na Doença de Parkinson usando potência relativa de sensores vestíveis: uma abordagem com Random Forestanálise de marchaDoença de Parkinsonfreezing of gaitgait analysismachine learningparkinson's diseaseprocessamento de sinaissignal processingFreezing of Gait (FoG) is one of the most debilitating motor symptoms of Parkinsons Disease (PD), characterized by the sudden and temporary inability to start or continue walking. Detecting and monitoring these episodes is fundamental to improving diagnoses and intervention strategies. This paper proposes an approach based on spectral analysis of acceleration signals to identify patterns associated with FoG. The methodology employs the extraction of relative power characteristics using Welchs method, as well as the definition of a metric called Frequency Spectral Bands Ratio (FSBR). The data analyzed came from the Daphnet Freezing of Gait Dataset, which contains records from inertial sensors positioned on the ankle, thigh and trunk of patients with PD. The Random Forest algorithm was used to classify the events, evaluating different sensor positions and time window lengths (2s, 3s and 4s). The results indicate that longer windows improve FoG detection, with the trunk sensor showing the highest recall rate (0.918) for a 4-second window, making it the ideal configuration for minimizing false negatives. Confusion matrix analysis shows that the proposed approach captures critical motor transitions with high precision, making it a promising alternative for applications in continuous monitoring and real-time interventions. Additionally, the investigation of the most relevant spectral bands revealed that low-frequency oscillations in the Z-axis (1.5-2.0 Hz) and high-frequency components in the X-axis (20.0-30.0 Hz) play a key role in distinguishing between FoG episodes and normal gait. These findings reinforce the potential of spectral analysis in characterizing gait dynamics in PD patients, contributing to the development of more accurate and individualized detection systems.O Congelamento de Caminhada (FoG) é um dos sintomas motores mais debilitantes da Doença de Parkinson (DP), caracterizando-se pela incapacidade súbita e temporária de iniciar ou continuar a caminhada. A detecção e monitoramento desses episódios são fundamentais para aprimorar diagnósticos e estratégias de intervenção. Este trabalho propõe uma abordagem baseada em análise espectral de sinais de aceleração para identificar padrões associados ao FoG. A metodologia emprega a extração de características de potência relativa por meio do método de Welch, além da definição da métrica denominada Frequency Spectral Bands Ratio (FSBR). Os dados analisados provêm do conjunto Daphnet Freezing of Gait Dataset, que contém registros de sensores inerciais posicionados no tornozelo, coxa e tronco de pacientes com DP. Para a classificação dos eventos, utilizou-se o algoritmo Random Forest, avaliando diferentes posicionamentos de sensores e comprimentos de janela temporal (2s, 3s e 4s). Os resultados indicam que janelas mais longas melhoram a detecção do FoG, com o sensor de tronco apresentando a maior taxa de recall (0.918) para uma janela de 4 segundos, tornando-se a configuração ideal para minimizar falsos negativos. A análise da matriz de confusão demonstra que a abordagem proposta captura transições motoras críticas com alta precisão, sendo uma alternativa promissora para aplicações em monitoramento contínuo e intervenções em tempo real. Adicionalmente, a investigação das bandas espectrais mais relevantes revelou que oscilações de baixa frequência no eixo Z (1.52.0 Hz) e componentes de alta frequência no eixo X (20.030.0 Hz) desempenham um papel fundamental na distinção entre episódios de FoG e marcha normal. Esses achados reforçam o potencial da análise espectral na caracterização da dinâmica da marcha em pacientes com DP, contribuindo para o desenvolvimento de sistemas de detecção mais precisos e individualizados.Biblioteca Digitais de Teses e Dissertações da USPConceição Junior, Pedro de OliveiraSoares, João Paulo Ferreira2025-04-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-14052025-142659/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-05-15T15:14:02Zoai:teses.usp.br:tde-14052025-142659Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-05-15T15:14:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach Detecção de congelamento da marcha na Doença de Parkinson usando potência relativa de sensores vestíveis: uma abordagem com Random Forest |
| title |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach |
| spellingShingle |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach Soares, João Paulo Ferreira análise de marcha Doença de Parkinson freezing of gait gait analysis machine learning parkinson's disease processamento de sinais signal processing |
| title_short |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach |
| title_full |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach |
| title_fullStr |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach |
| title_full_unstemmed |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach |
| title_sort |
Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach |
| author |
Soares, João Paulo Ferreira |
| author_facet |
Soares, João Paulo Ferreira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Conceição Junior, Pedro de Oliveira |
| dc.contributor.author.fl_str_mv |
Soares, João Paulo Ferreira |
| dc.subject.por.fl_str_mv |
análise de marcha Doença de Parkinson freezing of gait gait analysis machine learning parkinson's disease processamento de sinais signal processing |
| topic |
análise de marcha Doença de Parkinson freezing of gait gait analysis machine learning parkinson's disease processamento de sinais signal processing |
| description |
Freezing of Gait (FoG) is one of the most debilitating motor symptoms of Parkinsons Disease (PD), characterized by the sudden and temporary inability to start or continue walking. Detecting and monitoring these episodes is fundamental to improving diagnoses and intervention strategies. This paper proposes an approach based on spectral analysis of acceleration signals to identify patterns associated with FoG. The methodology employs the extraction of relative power characteristics using Welchs method, as well as the definition of a metric called Frequency Spectral Bands Ratio (FSBR). The data analyzed came from the Daphnet Freezing of Gait Dataset, which contains records from inertial sensors positioned on the ankle, thigh and trunk of patients with PD. The Random Forest algorithm was used to classify the events, evaluating different sensor positions and time window lengths (2s, 3s and 4s). The results indicate that longer windows improve FoG detection, with the trunk sensor showing the highest recall rate (0.918) for a 4-second window, making it the ideal configuration for minimizing false negatives. Confusion matrix analysis shows that the proposed approach captures critical motor transitions with high precision, making it a promising alternative for applications in continuous monitoring and real-time interventions. Additionally, the investigation of the most relevant spectral bands revealed that low-frequency oscillations in the Z-axis (1.5-2.0 Hz) and high-frequency components in the X-axis (20.0-30.0 Hz) play a key role in distinguishing between FoG episodes and normal gait. These findings reinforce the potential of spectral analysis in characterizing gait dynamics in PD patients, contributing to the development of more accurate and individualized detection systems. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-09 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/18/18153/tde-14052025-142659/ |
| url |
https://www.teses.usp.br/teses/disponiveis/18/18153/tde-14052025-142659/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1844786334739202048 |