Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Soares, João Paulo Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18153/tde-14052025-142659/
Resumo: Freezing of Gait (FoG) is one of the most debilitating motor symptoms of Parkinsons Disease (PD), characterized by the sudden and temporary inability to start or continue walking. Detecting and monitoring these episodes is fundamental to improving diagnoses and intervention strategies. This paper proposes an approach based on spectral analysis of acceleration signals to identify patterns associated with FoG. The methodology employs the extraction of relative power characteristics using Welchs method, as well as the definition of a metric called Frequency Spectral Bands Ratio (FSBR). The data analyzed came from the Daphnet Freezing of Gait Dataset, which contains records from inertial sensors positioned on the ankle, thigh and trunk of patients with PD. The Random Forest algorithm was used to classify the events, evaluating different sensor positions and time window lengths (2s, 3s and 4s). The results indicate that longer windows improve FoG detection, with the trunk sensor showing the highest recall rate (0.918) for a 4-second window, making it the ideal configuration for minimizing false negatives. Confusion matrix analysis shows that the proposed approach captures critical motor transitions with high precision, making it a promising alternative for applications in continuous monitoring and real-time interventions. Additionally, the investigation of the most relevant spectral bands revealed that low-frequency oscillations in the Z-axis (1.5-2.0 Hz) and high-frequency components in the X-axis (20.0-30.0 Hz) play a key role in distinguishing between FoG episodes and normal gait. These findings reinforce the potential of spectral analysis in characterizing gait dynamics in PD patients, contributing to the development of more accurate and individualized detection systems.
id USP_0fd0de77276db3f4ee580c4057c828f5
oai_identifier_str oai:teses.usp.br:tde-14052025-142659
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approachDetecção de congelamento da marcha na Doença de Parkinson usando potência relativa de sensores vestíveis: uma abordagem com Random Forestanálise de marchaDoença de Parkinsonfreezing of gaitgait analysismachine learningparkinson's diseaseprocessamento de sinaissignal processingFreezing of Gait (FoG) is one of the most debilitating motor symptoms of Parkinsons Disease (PD), characterized by the sudden and temporary inability to start or continue walking. Detecting and monitoring these episodes is fundamental to improving diagnoses and intervention strategies. This paper proposes an approach based on spectral analysis of acceleration signals to identify patterns associated with FoG. The methodology employs the extraction of relative power characteristics using Welchs method, as well as the definition of a metric called Frequency Spectral Bands Ratio (FSBR). The data analyzed came from the Daphnet Freezing of Gait Dataset, which contains records from inertial sensors positioned on the ankle, thigh and trunk of patients with PD. The Random Forest algorithm was used to classify the events, evaluating different sensor positions and time window lengths (2s, 3s and 4s). The results indicate that longer windows improve FoG detection, with the trunk sensor showing the highest recall rate (0.918) for a 4-second window, making it the ideal configuration for minimizing false negatives. Confusion matrix analysis shows that the proposed approach captures critical motor transitions with high precision, making it a promising alternative for applications in continuous monitoring and real-time interventions. Additionally, the investigation of the most relevant spectral bands revealed that low-frequency oscillations in the Z-axis (1.5-2.0 Hz) and high-frequency components in the X-axis (20.0-30.0 Hz) play a key role in distinguishing between FoG episodes and normal gait. These findings reinforce the potential of spectral analysis in characterizing gait dynamics in PD patients, contributing to the development of more accurate and individualized detection systems.O Congelamento de Caminhada (FoG) é um dos sintomas motores mais debilitantes da Doença de Parkinson (DP), caracterizando-se pela incapacidade súbita e temporária de iniciar ou continuar a caminhada. A detecção e monitoramento desses episódios são fundamentais para aprimorar diagnósticos e estratégias de intervenção. Este trabalho propõe uma abordagem baseada em análise espectral de sinais de aceleração para identificar padrões associados ao FoG. A metodologia emprega a extração de características de potência relativa por meio do método de Welch, além da definição da métrica denominada Frequency Spectral Bands Ratio (FSBR). Os dados analisados provêm do conjunto Daphnet Freezing of Gait Dataset, que contém registros de sensores inerciais posicionados no tornozelo, coxa e tronco de pacientes com DP. Para a classificação dos eventos, utilizou-se o algoritmo Random Forest, avaliando diferentes posicionamentos de sensores e comprimentos de janela temporal (2s, 3s e 4s). Os resultados indicam que janelas mais longas melhoram a detecção do FoG, com o sensor de tronco apresentando a maior taxa de recall (0.918) para uma janela de 4 segundos, tornando-se a configuração ideal para minimizar falsos negativos. A análise da matriz de confusão demonstra que a abordagem proposta captura transições motoras críticas com alta precisão, sendo uma alternativa promissora para aplicações em monitoramento contínuo e intervenções em tempo real. Adicionalmente, a investigação das bandas espectrais mais relevantes revelou que oscilações de baixa frequência no eixo Z (1.52.0 Hz) e componentes de alta frequência no eixo X (20.030.0 Hz) desempenham um papel fundamental na distinção entre episódios de FoG e marcha normal. Esses achados reforçam o potencial da análise espectral na caracterização da dinâmica da marcha em pacientes com DP, contribuindo para o desenvolvimento de sistemas de detecção mais precisos e individualizados.Biblioteca Digitais de Teses e Dissertações da USPConceição Junior, Pedro de OliveiraSoares, João Paulo Ferreira2025-04-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18153/tde-14052025-142659/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-05-15T15:14:02Zoai:teses.usp.br:tde-14052025-142659Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-05-15T15:14:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
Detecção de congelamento da marcha na Doença de Parkinson usando potência relativa de sensores vestíveis: uma abordagem com Random Forest
title Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
spellingShingle Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
Soares, João Paulo Ferreira
análise de marcha
Doença de Parkinson
freezing of gait
gait analysis
machine learning
parkinson's disease
processamento de sinais
signal processing
title_short Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
title_full Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
title_fullStr Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
title_full_unstemmed Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
title_sort Freezing of gait detection in Parkinsons Disease using relative power from wearable sensors: a Random Forest approach
author Soares, João Paulo Ferreira
author_facet Soares, João Paulo Ferreira
author_role author
dc.contributor.none.fl_str_mv Conceição Junior, Pedro de Oliveira
dc.contributor.author.fl_str_mv Soares, João Paulo Ferreira
dc.subject.por.fl_str_mv análise de marcha
Doença de Parkinson
freezing of gait
gait analysis
machine learning
parkinson's disease
processamento de sinais
signal processing
topic análise de marcha
Doença de Parkinson
freezing of gait
gait analysis
machine learning
parkinson's disease
processamento de sinais
signal processing
description Freezing of Gait (FoG) is one of the most debilitating motor symptoms of Parkinsons Disease (PD), characterized by the sudden and temporary inability to start or continue walking. Detecting and monitoring these episodes is fundamental to improving diagnoses and intervention strategies. This paper proposes an approach based on spectral analysis of acceleration signals to identify patterns associated with FoG. The methodology employs the extraction of relative power characteristics using Welchs method, as well as the definition of a metric called Frequency Spectral Bands Ratio (FSBR). The data analyzed came from the Daphnet Freezing of Gait Dataset, which contains records from inertial sensors positioned on the ankle, thigh and trunk of patients with PD. The Random Forest algorithm was used to classify the events, evaluating different sensor positions and time window lengths (2s, 3s and 4s). The results indicate that longer windows improve FoG detection, with the trunk sensor showing the highest recall rate (0.918) for a 4-second window, making it the ideal configuration for minimizing false negatives. Confusion matrix analysis shows that the proposed approach captures critical motor transitions with high precision, making it a promising alternative for applications in continuous monitoring and real-time interventions. Additionally, the investigation of the most relevant spectral bands revealed that low-frequency oscillations in the Z-axis (1.5-2.0 Hz) and high-frequency components in the X-axis (20.0-30.0 Hz) play a key role in distinguishing between FoG episodes and normal gait. These findings reinforce the potential of spectral analysis in characterizing gait dynamics in PD patients, contributing to the development of more accurate and individualized detection systems.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18153/tde-14052025-142659/
url https://www.teses.usp.br/teses/disponiveis/18/18153/tde-14052025-142659/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786334739202048