A functional approach to physics-informed neural networks
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45132/tde-15012026-154642/ |
Resumo: | This dissertation investigates the use of energy functionals derived from the variational formulation of partial differential equations (PDEs) as a basis for training Physics-Informed Neural Networks (PINNs). The work begins by revisiting the role of PDEs in modeling physical and biological phenomena, emphasizing the importance of variational principles as a mathematical foundation for obtaining weak solutions and for the development of numerical methods such as the Finite Element Method (FEM). It also reviews essential concepts from Machine Learning, including statistical learning theory, supervised learning, deep neural networks, and the training process based on empirical risk minimization. In this context, the use of automatic differentiation emerges as a key tool for computing gradients efficiently in high-dimensional models. Building on these theoretical elements, we explore the Functional PINN (Fun-PINN), a model that replaces the traditional residual-based training with the minimization of an energy functional directly associated with the PDE, which reduces the order of derivatives required during training, leading to gains in computational efficiency. We also introduce the Self-Adaptive Functional PINN (SA-Fun-PINN), which dynamically adjusts the relative importance of the energy and boundary terms during training. Both models were evaluated against classical PINNs and Self-Adaptive PINNs (SA-PINNs) in numerical experiments designed to assess convergence, accuracy, and computational efficiency. Two test cases were considered: one with a smooth solution, based on Laplace\'s equation, and another with a more oscillatory profile, based on the Poisson equation, allowing performance to be analyzed under increasing levels of complexity. The Fun-PINNs achieved stable training dynamics and offered meaningful reductions in runtime, while the self-adaptive version further improved accuracy with lower computational cost compared to SA-PINNs. In particular, the functional approach demonstrated superior performance in the oscillatory case. However, considering Fun-PINNs as a whole, these experiments do not allow us to claim results superior to those obtained with PINNs; rather, they show that Fun-PINNs are a viable alternative that also yields good results. Overall, this work highlights how classical mathematical concepts such as variational formulations and energy minimization can be effectively integrated with modern machine learning techniques. The proposed functional models combine theoretical consistency with practical efficiency, establishing a promising direction for future research on more complex PDEs, including inverse problems and hybrid approaches that link PINNs with traditional numerical solvers. |
| id |
USP_3a259b5fb970869c0c19ecbe7e938c92 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-15012026-154642 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
A functional approach to physics-informed neural networksUma abordagem funcional para redes neurais informadas pela físicaAprendizado de máquina científicoEquações diferenciais parciaisFuncional-PINNsFunctional PINNPartial differential equationsPhysics-informed neural networksRedes neurais informadas pela físicaScientific machine learningThis dissertation investigates the use of energy functionals derived from the variational formulation of partial differential equations (PDEs) as a basis for training Physics-Informed Neural Networks (PINNs). The work begins by revisiting the role of PDEs in modeling physical and biological phenomena, emphasizing the importance of variational principles as a mathematical foundation for obtaining weak solutions and for the development of numerical methods such as the Finite Element Method (FEM). It also reviews essential concepts from Machine Learning, including statistical learning theory, supervised learning, deep neural networks, and the training process based on empirical risk minimization. In this context, the use of automatic differentiation emerges as a key tool for computing gradients efficiently in high-dimensional models. Building on these theoretical elements, we explore the Functional PINN (Fun-PINN), a model that replaces the traditional residual-based training with the minimization of an energy functional directly associated with the PDE, which reduces the order of derivatives required during training, leading to gains in computational efficiency. We also introduce the Self-Adaptive Functional PINN (SA-Fun-PINN), which dynamically adjusts the relative importance of the energy and boundary terms during training. Both models were evaluated against classical PINNs and Self-Adaptive PINNs (SA-PINNs) in numerical experiments designed to assess convergence, accuracy, and computational efficiency. Two test cases were considered: one with a smooth solution, based on Laplace\'s equation, and another with a more oscillatory profile, based on the Poisson equation, allowing performance to be analyzed under increasing levels of complexity. The Fun-PINNs achieved stable training dynamics and offered meaningful reductions in runtime, while the self-adaptive version further improved accuracy with lower computational cost compared to SA-PINNs. In particular, the functional approach demonstrated superior performance in the oscillatory case. However, considering Fun-PINNs as a whole, these experiments do not allow us to claim results superior to those obtained with PINNs; rather, they show that Fun-PINNs are a viable alternative that also yields good results. Overall, this work highlights how classical mathematical concepts such as variational formulations and energy minimization can be effectively integrated with modern machine learning techniques. The proposed functional models combine theoretical consistency with practical efficiency, establishing a promising direction for future research on more complex PDEs, including inverse problems and hybrid approaches that link PINNs with traditional numerical solvers.Esta dissertação investiga o uso de funcionais de energia derivados da formulação variacional de equações diferenciais parciais (EDPs) como base para o treinamento de Physics-Informed Neural Networks(PINNs). O trabalho inicia revisitando o papel das EDPs na modelagem de fenômenos físicos e biológicos, enfatizando a importância dos princípios variacionais como fundamento matemático para a obtenção de soluções fracas e para o desenvolvimento de métodos numéricos, como o Método dos Elementos Finitos (FEM). Também são revisados conceitos essenciais de Aprendizado de Máquina, incluindo teoria do aprendizado estatístico, aprendizado supervisionado, redes neurais profundas e o processo de treinamento baseado na minimização do risco empírico. Nesse contexto, a utilização da diferenciação automática surge como ferramenta fundamental para o cálculo eficiente de gradientes em modelos de alta dimensão. Com base nesses elementos teóricos, exploramos a Functional-PINN (Fun-PINN), um modelo em que o treinamento é guiado pela minimização de um funcional de energia diretamente associado à EDP, o que reduz a ordem das derivadas requeridas durante o treinamento, resultando em ganhos de eficiência computacional. Além disso, introduzimos a Self-Adaptive Functional-PINN (SA Fun-PINN), que ajusta dinamicamente, durante o treinamento, a importância relativa entre os termos de energia e de contorno. Ambos os modelos foram avaliados em comparação com PINNs clássicas e suas versões auto-adaptativas (SA-PINNs), em experimentos numéricos projetados para avaliar convergência, acurácia e eficiência computacional. Foram considerados dois casos de teste: um com solução suave, baseado na equação de Laplace, e outro com perfil mais oscilatório, baseado na equação de Poisson, permitindo analisar o desempenho sob diferentes níveis de complexidade. As Fun-PINNs apresentaram dinâmicas de treinamento estáveis e proporcionaram reduções significativas no tempo de execução, enquanto a versão auto-adaptativa melhorou ainda mais a acurácia com menor custo computacional em comparação às SA-PINNs. Em particular, a abordagem funcional mostrou desempenho superior no caso oscilatório. Porém, olhando para a Fun-PINN como um todo, com esses experimentos não podemos garantir que os resultados sejam melhores do que os obtidos com as PINNs; mostramos que elas podem ser uma alternativa que também entrega bons resultados.De forma geral, este trabalho evidencia como conceitos matemáticos clássicos, como formulações variacionais e minimização de funcionais de energia, podem ser integrados de maneira eficaz a técnicas modernas de aprendizado de máquina. Os modelos funcionais propostos combinam consistência teórica com eficiência prática, estabelecendo um caminho promissor para futuras aplicações em problemas de EDP mais complexos, incluindo problemas inversos e formulações híbridas que integrem PINNs a métodos numéricos tradicionais.Biblioteca Digitais de Teses e Dissertações da USPKuhl, Nelson MugayarMarcondes, Diego RibeiroZeiser, Mateus Henrique2025-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45132/tde-15012026-154642/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2026-01-19T09:01:02Zoai:teses.usp.br:tde-15012026-154642Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212026-01-19T09:01:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
A functional approach to physics-informed neural networks Uma abordagem funcional para redes neurais informadas pela física |
| title |
A functional approach to physics-informed neural networks |
| spellingShingle |
A functional approach to physics-informed neural networks Zeiser, Mateus Henrique Aprendizado de máquina científico Equações diferenciais parciais Funcional-PINNs Functional PINN Partial differential equations Physics-informed neural networks Redes neurais informadas pela física Scientific machine learning |
| title_short |
A functional approach to physics-informed neural networks |
| title_full |
A functional approach to physics-informed neural networks |
| title_fullStr |
A functional approach to physics-informed neural networks |
| title_full_unstemmed |
A functional approach to physics-informed neural networks |
| title_sort |
A functional approach to physics-informed neural networks |
| author |
Zeiser, Mateus Henrique |
| author_facet |
Zeiser, Mateus Henrique |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Kuhl, Nelson Mugayar Marcondes, Diego Ribeiro |
| dc.contributor.author.fl_str_mv |
Zeiser, Mateus Henrique |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina científico Equações diferenciais parciais Funcional-PINNs Functional PINN Partial differential equations Physics-informed neural networks Redes neurais informadas pela física Scientific machine learning |
| topic |
Aprendizado de máquina científico Equações diferenciais parciais Funcional-PINNs Functional PINN Partial differential equations Physics-informed neural networks Redes neurais informadas pela física Scientific machine learning |
| description |
This dissertation investigates the use of energy functionals derived from the variational formulation of partial differential equations (PDEs) as a basis for training Physics-Informed Neural Networks (PINNs). The work begins by revisiting the role of PDEs in modeling physical and biological phenomena, emphasizing the importance of variational principles as a mathematical foundation for obtaining weak solutions and for the development of numerical methods such as the Finite Element Method (FEM). It also reviews essential concepts from Machine Learning, including statistical learning theory, supervised learning, deep neural networks, and the training process based on empirical risk minimization. In this context, the use of automatic differentiation emerges as a key tool for computing gradients efficiently in high-dimensional models. Building on these theoretical elements, we explore the Functional PINN (Fun-PINN), a model that replaces the traditional residual-based training with the minimization of an energy functional directly associated with the PDE, which reduces the order of derivatives required during training, leading to gains in computational efficiency. We also introduce the Self-Adaptive Functional PINN (SA-Fun-PINN), which dynamically adjusts the relative importance of the energy and boundary terms during training. Both models were evaluated against classical PINNs and Self-Adaptive PINNs (SA-PINNs) in numerical experiments designed to assess convergence, accuracy, and computational efficiency. Two test cases were considered: one with a smooth solution, based on Laplace\'s equation, and another with a more oscillatory profile, based on the Poisson equation, allowing performance to be analyzed under increasing levels of complexity. The Fun-PINNs achieved stable training dynamics and offered meaningful reductions in runtime, while the self-adaptive version further improved accuracy with lower computational cost compared to SA-PINNs. In particular, the functional approach demonstrated superior performance in the oscillatory case. However, considering Fun-PINNs as a whole, these experiments do not allow us to claim results superior to those obtained with PINNs; rather, they show that Fun-PINNs are a viable alternative that also yields good results. Overall, this work highlights how classical mathematical concepts such as variational formulations and energy minimization can be effectively integrated with modern machine learning techniques. The proposed functional models combine theoretical consistency with practical efficiency, establishing a promising direction for future research on more complex PDEs, including inverse problems and hybrid approaches that link PINNs with traditional numerical solvers. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-11-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-15012026-154642/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-15012026-154642/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1857669979000799232 |