Covariant quantization of gauge theories with Lagrange multipliers
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/43/43134/tde-19122024-130256/ |
Resumo: | We revisited the equivalence between the second- and first-order formulations of the Yang-Mills and gravity using the path integral formalism. We demonstrated that structural identities can be derived to relate Green\'s functions of auxiliary fields, computed in the first-order formulation, to Green\'s functions of composite fields in the second-order formulation. In Yang-Mills theory, these identities can be verified at the integrand level of the loop integrals. For gravity, the path integral was obtained through the Faddeev-Senjanovic procedure. The Senjanovic determinant plays a key role in canceling tadpole-like contributions, which vanish in the dimensional regularization scheme but persist at finite temperature. Thus, the equivalence between the two formalisms is maintained at finite temperature. We also studied the coupling to matter. In Yang-Mills theory, we investigated both minimal and non-minimal couplings. We derived first-order formulations, equivalent to the respective second-order formulations, by employing a procedure that introduces Lagrange multipliers. This procedure can be easily generalized to gravity. We also considered an alternative gravity model, which is both renormalizable and unitary, that uses Lagrange multipliers to restrict the loop expansion to one-loop order. However, this approach leads to a doubling of one-loop contributions due to the additional degrees of freedom associated with Ostrogradsky instabilities. To address this, we proposed a modified formalism that resolves these issues by requiring the path integral to be invariant under field redefinitions. This introduces ghost fields responsible for canceling the extra one-loop contributions arising from the Lagrange multiplier fields, while also removing unphysical degrees of freedom. We also demonstrated that the modified formalism and the Faddeev-Popov procedure commute, indicating that the Lagrange multipliers can be viewed as purely quantum fields. |
| id |
USP_5d47f2eefa36d103586a4a627f7447fd |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-19122024-130256 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Covariant quantization of gauge theories with Lagrange multipliersQuantizacão covariante de teorias de calibre com multiplicadores de LagrangeEquivalência quânticaFirst-Order formulationFormulação de primeira ordemGravitaçãoGravityLagrange multiplierMultiplicador de LagrangeQuantum equivalenceTeoria de Yang-MillsYang-Mills theoryWe revisited the equivalence between the second- and first-order formulations of the Yang-Mills and gravity using the path integral formalism. We demonstrated that structural identities can be derived to relate Green\'s functions of auxiliary fields, computed in the first-order formulation, to Green\'s functions of composite fields in the second-order formulation. In Yang-Mills theory, these identities can be verified at the integrand level of the loop integrals. For gravity, the path integral was obtained through the Faddeev-Senjanovic procedure. The Senjanovic determinant plays a key role in canceling tadpole-like contributions, which vanish in the dimensional regularization scheme but persist at finite temperature. Thus, the equivalence between the two formalisms is maintained at finite temperature. We also studied the coupling to matter. In Yang-Mills theory, we investigated both minimal and non-minimal couplings. We derived first-order formulations, equivalent to the respective second-order formulations, by employing a procedure that introduces Lagrange multipliers. This procedure can be easily generalized to gravity. We also considered an alternative gravity model, which is both renormalizable and unitary, that uses Lagrange multipliers to restrict the loop expansion to one-loop order. However, this approach leads to a doubling of one-loop contributions due to the additional degrees of freedom associated with Ostrogradsky instabilities. To address this, we proposed a modified formalism that resolves these issues by requiring the path integral to be invariant under field redefinitions. This introduces ghost fields responsible for canceling the extra one-loop contributions arising from the Lagrange multiplier fields, while also removing unphysical degrees of freedom. We also demonstrated that the modified formalism and the Faddeev-Popov procedure commute, indicating that the Lagrange multipliers can be viewed as purely quantum fields.Revisitamos a equivalência entre as formulações de segunda- e primeira-ordem das teorias de Yang-Mills e da gravitação usando o formalismo de integrais de trajetória. Demonstramos que identidades estruturais podem ser derivadas para relacionar as funções de Green de campos auxiliares, calculadas na formulação de primeira ordem, com as funções de Green de campos compostos na formulação de segunda ordem. Na teoria de Yang-Mills, essas identidades podem ser verificadas no nível do integrando das integrais de laço. Para a gravitação, a integral de trajetória foi obtida através do procedimento de Faddeev-Senjanovic. O determinante de Senjanovic desempenha um papel chave no cancelamento das contribuições do tipo tadpole, que se anulam no esquema de regularização dimensional, mas persistem à temperatura finita. Portanto, a equivalência entre os dois formalismos é mantida à temperatura finita. Também estudamos o acoplamento com a matéria. Na teoria de Yang-Mills, investigamos tanto os acoplamentos mínimos quanto os não mínimos. Derivamos formulações de primeira ordem com esses acoplamentos, equivalentes às respectivas formulações de segunda ordem, ao empregar um procedimento que introduz multiplicadores de Lagrange. Esse procedimento pode ser facilmente generalizado para a gravitação. Consideramos também um modelo alternativo de gravitação, renormalizável e unitário, que usa multiplicadores de Lagrange para restringir a expansão de laço até a ordem de um laço. No entanto, essa abordagem leva à duplicação das contribuições de um laço devido aos graus de liberdade adicionais associados às instabilidades de Ostrogradsky. Para resolver isso, propusemos um formalismo modificado que resolve tais problemas exigindo que a integral de trajetória seja invariante sob redefinições de campo. Isso introduz campos fantasmas responsáveis por cancelar as contribuições extras de um laço provenientes dos campos multiplicadores de Lagrange, enquanto também remove os graus de liberdade não físicos. Demonstramos também que o formalismo modificado e o procedimento de Faddeev-Popov comutam, indicando que os multiplicadores de Lagrange podem ser vistos como campos puramente quânticos.Biblioteca Digitais de Teses e Dissertações da USPBrandt, Fernando Tadeu CaldeiraMartins Filho, Sérgio2024-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/43/43134/tde-19122024-130256/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-14T15:22:01Zoai:teses.usp.br:tde-19122024-130256Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-14T15:22:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Covariant quantization of gauge theories with Lagrange multipliers Quantizacão covariante de teorias de calibre com multiplicadores de Lagrange |
| title |
Covariant quantization of gauge theories with Lagrange multipliers |
| spellingShingle |
Covariant quantization of gauge theories with Lagrange multipliers Martins Filho, Sérgio Equivalência quântica First-Order formulation Formulação de primeira ordem Gravitação Gravity Lagrange multiplier Multiplicador de Lagrange Quantum equivalence Teoria de Yang-Mills Yang-Mills theory |
| title_short |
Covariant quantization of gauge theories with Lagrange multipliers |
| title_full |
Covariant quantization of gauge theories with Lagrange multipliers |
| title_fullStr |
Covariant quantization of gauge theories with Lagrange multipliers |
| title_full_unstemmed |
Covariant quantization of gauge theories with Lagrange multipliers |
| title_sort |
Covariant quantization of gauge theories with Lagrange multipliers |
| author |
Martins Filho, Sérgio |
| author_facet |
Martins Filho, Sérgio |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Brandt, Fernando Tadeu Caldeira |
| dc.contributor.author.fl_str_mv |
Martins Filho, Sérgio |
| dc.subject.por.fl_str_mv |
Equivalência quântica First-Order formulation Formulação de primeira ordem Gravitação Gravity Lagrange multiplier Multiplicador de Lagrange Quantum equivalence Teoria de Yang-Mills Yang-Mills theory |
| topic |
Equivalência quântica First-Order formulation Formulação de primeira ordem Gravitação Gravity Lagrange multiplier Multiplicador de Lagrange Quantum equivalence Teoria de Yang-Mills Yang-Mills theory |
| description |
We revisited the equivalence between the second- and first-order formulations of the Yang-Mills and gravity using the path integral formalism. We demonstrated that structural identities can be derived to relate Green\'s functions of auxiliary fields, computed in the first-order formulation, to Green\'s functions of composite fields in the second-order formulation. In Yang-Mills theory, these identities can be verified at the integrand level of the loop integrals. For gravity, the path integral was obtained through the Faddeev-Senjanovic procedure. The Senjanovic determinant plays a key role in canceling tadpole-like contributions, which vanish in the dimensional regularization scheme but persist at finite temperature. Thus, the equivalence between the two formalisms is maintained at finite temperature. We also studied the coupling to matter. In Yang-Mills theory, we investigated both minimal and non-minimal couplings. We derived first-order formulations, equivalent to the respective second-order formulations, by employing a procedure that introduces Lagrange multipliers. This procedure can be easily generalized to gravity. We also considered an alternative gravity model, which is both renormalizable and unitary, that uses Lagrange multipliers to restrict the loop expansion to one-loop order. However, this approach leads to a doubling of one-loop contributions due to the additional degrees of freedom associated with Ostrogradsky instabilities. To address this, we proposed a modified formalism that resolves these issues by requiring the path integral to be invariant under field redefinitions. This introduces ghost fields responsible for canceling the extra one-loop contributions arising from the Lagrange multiplier fields, while also removing unphysical degrees of freedom. We also demonstrated that the modified formalism and the Faddeev-Popov procedure commute, indicating that the Lagrange multipliers can be viewed as purely quantum fields. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-16 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-19122024-130256/ |
| url |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-19122024-130256/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839150350532608 |