Existência de soluções para equações integro-diferenciais neutras
| Ano de defesa: | 2006 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27022007-143121/ |
Resumo: | Neste trabalho estudaremos a existência de soluções fracas, semi-clássicas e clássicas, conceitos introduzidos no texto para uma classe de sistemas integro-diferenciais do tipo neutro com retardamento não limitado modelados na forma d/dt D(t, xt) = AD(t, xt) + ∫t0 B(t - s)D(s, xs)ds + g(t, xt), t ∈ (0, a), x0 = φ ∈ B, d/dt (x(t) + F(t, xt)) = Ax(t) + ∫t0 B(t - s)x(s)ds + G(t, xt), t ∈ (0, a), x0 = φ ∈ B, onde A é um operador linear fechado densamente definido em um espaço de Banach X, cada B(t) : D(B(t)) ⊂ X → X, t ≥ 0 é um operador linear fechado, a história xt : (-∞, 0] → X, xt(θ) = x(t + θ), pertence a um espaço de fase abstrato B definido axiomaticamente e D, F, g, G : [0, a] × B → X são funções apropriadas. Para obter alguns de nossos resultados, estudamos a existência e propriedades qualitativas de uma família resolvente de operadores lineares limitados (R(t))t≥0, para o sistema integro-diferencial d/dt (x(t) + ∫t0 N(t - s)x(s)ds) = Ax(t) + ∫t0 B(t - s)x(s) ds, t ∈ (0, a), x(0) = x0, onde (N(t)) t≥0 é uma família de operadores lineares limitados em X. Mencionamos que este tipo de sistemas aparece no estudo da condução de calor em materiais com memória amortecida. |
| id |
USP_352624dfe6cfc62e9cd2a0320c77d9ee |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-27022007-143121 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Existência de soluções para equações integro-diferenciais neutrasExistence results for neutral integro-differential equationsEquações integro-diferenciaisEquações neutrasItegro-differential equationsNeutral equationsOperadores resolventesResolvent operatorsNeste trabalho estudaremos a existência de soluções fracas, semi-clássicas e clássicas, conceitos introduzidos no texto para uma classe de sistemas integro-diferenciais do tipo neutro com retardamento não limitado modelados na forma d/dt D(t, xt) = AD(t, xt) + ∫t0 B(t - s)D(s, xs)ds + g(t, xt), t ∈ (0, a), x0 = φ ∈ B, d/dt (x(t) + F(t, xt)) = Ax(t) + ∫t0 B(t - s)x(s)ds + G(t, xt), t ∈ (0, a), x0 = φ ∈ B, onde A é um operador linear fechado densamente definido em um espaço de Banach X, cada B(t) : D(B(t)) ⊂ X → X, t ≥ 0 é um operador linear fechado, a história xt : (-∞, 0] → X, xt(θ) = x(t + θ), pertence a um espaço de fase abstrato B definido axiomaticamente e D, F, g, G : [0, a] × B → X são funções apropriadas. Para obter alguns de nossos resultados, estudamos a existência e propriedades qualitativas de uma família resolvente de operadores lineares limitados (R(t))t≥0, para o sistema integro-diferencial d/dt (x(t) + ∫t0 N(t - s)x(s)ds) = Ax(t) + ∫t0 B(t - s)x(s) ds, t ∈ (0, a), x(0) = x0, onde (N(t)) t≥0 é uma família de operadores lineares limitados em X. Mencionamos que este tipo de sistemas aparece no estudo da condução de calor em materiais com memória amortecida.In this work we study the existence of mild, semi-classical and classical solution, concepts introduced be later for a class of abstract neutral functional integrodifferential systems with unbounded delay in the form d/dt D(t, xt) = AD(t, xt) + ∫t0 B(t - s)D(s, xs)ds + g(t, xt), t ∈ (0, a), x0 = φ ∈ B, d/dt (x(t) + F(t, xt)) = Ax(t) + ∫t0 B(t - s)x(s)ds + G(t, xt), t ∈ (0, a), x0 = φ ∈ B, where A : D(A) ⊂ X → X is a closed linear densely defined operator in a Banach space X, each B(t) : D(B(t)) ⊂ X → X, is a closed linear operator, the history xt : (-∞, 0] → X, xt(θ) = x(t + θ), belongs to some abstract phase space B defined axiomatically and D, F, g :[0, a] × B → X are appropriate functions. To establish some of our results, we studied the existence and qualitative properties of a resolvent of bounded linear operators (R(t))t≥0, for a system in the form d/dt (x(t) + ∫t0 N(t - s)x(s)ds) = Ax(t) + ∫t0 B(t - s)x(s) ds, t ∈ (0, a), x(0) = x0, where (N(t)) t≥0 is a family of bounded linear operators on X. We mention that this class of system arise in the study of heat conduction in material with fading memory.Biblioteca Digitais de Teses e Dissertações da USPMorales, Eduardo Alex HernandezSantos, José Paulo Carvalho dos2006-05-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-27022007-143121/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:50Zoai:teses.usp.br:tde-27022007-143121Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:50Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Existência de soluções para equações integro-diferenciais neutras Existence results for neutral integro-differential equations |
| title |
Existência de soluções para equações integro-diferenciais neutras |
| spellingShingle |
Existência de soluções para equações integro-diferenciais neutras Santos, José Paulo Carvalho dos Equações integro-diferenciais Equações neutras Itegro-differential equations Neutral equations Operadores resolventes Resolvent operators |
| title_short |
Existência de soluções para equações integro-diferenciais neutras |
| title_full |
Existência de soluções para equações integro-diferenciais neutras |
| title_fullStr |
Existência de soluções para equações integro-diferenciais neutras |
| title_full_unstemmed |
Existência de soluções para equações integro-diferenciais neutras |
| title_sort |
Existência de soluções para equações integro-diferenciais neutras |
| author |
Santos, José Paulo Carvalho dos |
| author_facet |
Santos, José Paulo Carvalho dos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Morales, Eduardo Alex Hernandez |
| dc.contributor.author.fl_str_mv |
Santos, José Paulo Carvalho dos |
| dc.subject.por.fl_str_mv |
Equações integro-diferenciais Equações neutras Itegro-differential equations Neutral equations Operadores resolventes Resolvent operators |
| topic |
Equações integro-diferenciais Equações neutras Itegro-differential equations Neutral equations Operadores resolventes Resolvent operators |
| description |
Neste trabalho estudaremos a existência de soluções fracas, semi-clássicas e clássicas, conceitos introduzidos no texto para uma classe de sistemas integro-diferenciais do tipo neutro com retardamento não limitado modelados na forma d/dt D(t, xt) = AD(t, xt) + ∫t0 B(t - s)D(s, xs)ds + g(t, xt), t ∈ (0, a), x0 = φ ∈ B, d/dt (x(t) + F(t, xt)) = Ax(t) + ∫t0 B(t - s)x(s)ds + G(t, xt), t ∈ (0, a), x0 = φ ∈ B, onde A é um operador linear fechado densamente definido em um espaço de Banach X, cada B(t) : D(B(t)) ⊂ X → X, t ≥ 0 é um operador linear fechado, a história xt : (-∞, 0] → X, xt(θ) = x(t + θ), pertence a um espaço de fase abstrato B definido axiomaticamente e D, F, g, G : [0, a] × B → X são funções apropriadas. Para obter alguns de nossos resultados, estudamos a existência e propriedades qualitativas de uma família resolvente de operadores lineares limitados (R(t))t≥0, para o sistema integro-diferencial d/dt (x(t) + ∫t0 N(t - s)x(s)ds) = Ax(t) + ∫t0 B(t - s)x(s) ds, t ∈ (0, a), x(0) = x0, onde (N(t)) t≥0 é uma família de operadores lineares limitados em X. Mencionamos que este tipo de sistemas aparece no estudo da condução de calor em materiais com memória amortecida. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006-05-29 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27022007-143121/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27022007-143121/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258492362031104 |